【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

(2)當時,若對任意的,總存在,使成立,求實數(shù)的取值范圍;

(3)若的值域為區(qū)間,是否存在常數(shù),使區(qū)間的長度為?若存在,求出的值;若不存在,請說明理由.(注:區(qū)間的長度為

【答案】(1) (2) (3) .

【解析】試題分析:(1)根據(jù)題意的對稱軸是,得到在區(qū)間遞增,列出不等式組,即可求解實數(shù)的范圍;

(2)只需函數(shù)的值域是函數(shù)的值域的子集,通過討論,的情況,得到函數(shù)的單調性,從而確定實數(shù)的取值范圍;

(3)通過討論的范圍,結合函數(shù)的單調性以及的值,得到關于的方程,即可求解的值.

試題解析:

(1)根據(jù)題意得: 的對稱軸是,故在區(qū)間遞增,

因為函數(shù)在區(qū)間上存在零點,故有,即,

故所求實數(shù)的范圍是

(2)若對任意的,總存在,使成立,

只需函數(shù)的值域是函數(shù)的值域的子集,

時, 的值域是,

下面求 的值域,

,則 ,

時, 是常數(shù),不合題意,舍去;

時, 的值域是

要使 ,只需,計算得出;

時, 的值域是,

要使 ,只需,計算得出;

綜上, 的范圍是.

(3)根據(jù)題意得,計算得出,

時,在區(qū)間上, 最大, 最小,

,

計算得出: (舍去);

時,在區(qū)間上, 最大, 最小,

,計算得出: ;

時,在區(qū)間上, 最大, 最小,

,

計算得出: ,故此時不存在常數(shù)滿足題意,

綜上,存在常數(shù)滿足題意, .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)報道,某公司的32名職工的月工資(單位:元)如下:

職務

董事長

副董事長

董事

總經(jīng)理

經(jīng)理

管理

職員

人數(shù)

1

1

2

1

5

3

20

工資

5 500

5 000

3 500

3 000

2 500

2 000

1 500

(1)求該公司職工工資的平均數(shù)、中位數(shù)、眾數(shù).(精確到1元)

(2)假設副董事長的工資從5 000元提升到20 000元,董事長的工資從5 500元提升到30 000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)分別是多少?(精確到1元)

(3)你認為哪個統(tǒng)計量更能反映這個公司員工的工資水平?結合此問題談一談你的看法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡的發(fā)展,人們可以在網(wǎng)絡上購物、玩游戲、聊天、導航等,所以人們對上網(wǎng)流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結果如表.

組號

年齡

訪談人數(shù)

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應分別抽取多少人?
(Ⅱ)若從第5組的被調查者訪談人中隨機選取2人進行追蹤調查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關?

年齡不低于48歲的人數(shù)

年齡低于48歲的人數(shù)

合計

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計

參考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可歸納出對任意角度θ都成立的一個等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數(shù)學成績及格的60名學生中有45人比較細心,另15人比較粗心;在數(shù)學成績不及格的40名學生中有10人比較細心,另30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成2×2列聯(lián)表;

數(shù)學成績及格

數(shù)學成績不及格

合計

比較細心

比較粗心

合計


(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系. 參考數(shù)據(jù):獨立檢驗隨機變量K2的臨界值參考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數(shù)學成績及格的60名學生中有45人比較細心,另15人比較粗心;在數(shù)學成績不及格的40名學生中有10人比較細心,另30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成2×2列聯(lián)表;

數(shù)學成績及格

數(shù)學成績不及格

合計

比較細心

比較粗心

合計


(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系. 參考數(shù)據(jù):獨立檢驗隨機變量K2的臨界值參考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A店

B店

C店

售價x(元)

80

86

82

88

84

90

銷售量y(件)

88

78

85

75

82

66


(1)以三家連鎖店分別的平均售價和平均銷量為散點,求出售價與銷量的回歸直線方程 ;
(2)在大量投入市場后,銷售量與單價仍然服從(1)中的關系,且該夏裝成本價為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元(保留整數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽.經(jīng)過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數(shù)學期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是60名男生每分鐘脈搏跳動次數(shù)的頻率分布表.

分組

頻數(shù)

頻率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其頻率分布直方圖;

(2)根據(jù)直方圖的各組中值估計總體平均數(shù);

(3)估計每分鐘脈搏跳動次數(shù)的范圍.

查看答案和解析>>

同步練習冊答案