2.為了得到函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinx的圖象上所有的點( 。
A.橫坐標伸長到原來的2倍,再向左平行移動$\frac{π}{3}$個單位長度
B.橫坐標縮短到原來的$\frac{1}{2}$倍,再向左平行移動$\frac{π}{3}$個單位長度
C.橫坐標縮短到原來的$\frac{1}{2}$倍,再向左平行移動$\frac{π}{6}$個單位長度
D.橫坐標縮短到原來的$\frac{1}{2}$倍,再向右平行移動$\frac{π}{6}$個單位長度

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:將函數(shù)y=sinx的圖象上所有的點的橫坐標縮短到原來的$\frac{1}{2}$倍,可得y=sin2x的圖象,
再向左平行移動$\frac{π}{6}$個單位長度,可得y=sin2(x+$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)的圖象,
故選:C.

點評 函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.曲線y=x2 與直線y=x 所圍成的封閉圖形的面積為(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=log2(x+1),則f(-3)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=x3-ax2+4的零點小于3個,則a的取值范圍是(  )
A.(-∞,0]B.(-∞,1]C.(-∞,2]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+1)=2f(x),當x∈[0,1)時,f(x)=-x2+x.設(shè)f(x)在[n-1,n)上的最大值為an(n∈N*),則a3+a4+a5=( 。
A.7B.$\frac{7}{8}$C.$\frac{5}{4}$D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.周期為4的奇函數(shù)f(x)在[0,2]上的解析式為f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,則f(2015)+f(2016)+f(2017)+f(2018)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值.
(1)確定a的值;
(2)若gx)=f(x)ex,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,則下列關(guān)于函數(shù)f(x)的說法中正確的是(  )
A.在(-$\frac{3π}{2}$,-$\frac{5π}{6}$)上單調(diào)遞減B.φ=-$\frac{π}{6}$
C.最小正周期是πD.對稱軸方程是x=$\frac{π}{3}$+2kπ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=ax5-bx+1,若f(lg(log510))=5,求f(lg(lg5))的值(  )
A.-3B.5C.-5D.-9

查看答案和解析>>

同步練習冊答案