【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設a=2,函數(shù)f(x)的定義域為[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
【答案】(1)最小值為2,最大值為6;(2)a>1時,解集為{x|0<x<1},0<a<1時,解集為{x|-1<x<0}.
【解析】試題分析:(1)根據(jù)函數(shù)單調(diào)性求函數(shù)最值(2)根據(jù)底與1的大小,分類討論函數(shù)單調(diào)性,化簡不等式,解出x的取值范圍.
試題解析:
(1)當a=2時,f(x)=log2(1+x),
在[3,63]上為增函數(shù),因此當x=3時,f(x)最小值為2.
當x=63時f(x)最大值為6.
(2)f(x)-g(x)>0即f(x)>g(x)
當a>1時,loga(1+x)>loga(1-x)
滿足∴0<x<1
當0<a<1時,loga(1+x)>loga(1-x)
滿足∴-1<x<0
綜上a>1時,解集為{x|0<x<1}
0<a<1時解集為{x|-1<x<0}.
科目:高中數(shù)學 來源: 題型:
【題目】下列5個命題中正確命題的個數(shù)是( )
①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;
②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;
④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;
⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy上取兩個定點 再取兩個動點,,且.
(Ⅰ)求直線與交點M的軌跡C的方程;
(Ⅱ)過的直線與軌跡C交于P,Q,過P作軸且與軌跡C交于另一點N,F為軌跡C的右焦點,若,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),參與空氣質(zhì)量評價的主要污染物為等六項.空氣質(zhì)量按照大小分為六級:一級為優(yōu);二級為良好;三級為輕度污染;四級為中度污染;五級為重度污染;六級為嚴重污染.
某人根據(jù)環(huán)境監(jiān)測總站公布的數(shù)據(jù)記錄了某地某月連續(xù)10天的莖葉圖如圖所示:
(1)利用訪樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算);
(2)若從樣本中的空氣質(zhì)量不佳()的這些天中,隨機地抽取三天深入分析各種污染指標,求這三天的空氣質(zhì)量等級互不相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)滿足對任意,,恒有,且不恒為0.
(1)求和的值;
(2)試判斷的奇偶性,并加以證明;
(3)若,恒有,求滿足不等式的的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距離
(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個面淋雨)的淋雨量,假設其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記為E移動過程中的總淋雨量,當移動距離d=100,面積S=時。
(1)寫出的表達式
(2)設0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動速度,使總淋雨量最少。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com