【題目】已知函數(shù)f(x)loga(1x)g(x)loga(1x),(a>0,a1).

(1)a2函數(shù)f(x)的定義域為[3,63]f(x)的最值;

(2)求使f(x)g(x)>0x的取值范圍.

【答案】(1)最小值為2,最大值為6;(2)a>1時,解集為{x|0<x<1}0<a<1時,解集為{x|1<x<0}.

【解析】試題分析:(1)根據(jù)函數(shù)單調(diào)性求函數(shù)最值(2)根據(jù)底與1的大小,分類討論函數(shù)單調(diào)性,化簡不等式,解出x的取值范圍.

試題解析:

(1)當a=2時,f(x)=log2(1+x),

在[3,63]上為增函數(shù),因此當x=3時,f(x)最小值為2.

x=63時f(x)最大值為6.

(2)f(x)-g(x)>0即f(x)>g(x)

a>1時,loga(1+x)>loga(1-x)

滿足∴0<x<1

當0<a<1時,loga(1+x)>loga(1-x)

滿足∴-1<x<0

綜上a>1時,解集為{x|0<x<1}

0a<1時解集為{x|1<x0}

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列5個命題中正確命題的個數(shù)是( )

①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;

④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;

⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy上取兩個定點 再取兩個動點,且

(Ⅰ)求直線交點M的軌跡C的方程;

(Ⅱ)過的直線與軌跡C交于P,Q,過P軸且與軌跡C交于另一點N,F為軌跡C的右焦點,若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),參與空氣質(zhì)量評價的主要污染物為等六項.空氣質(zhì)量按照大小分為六級:一級為優(yōu);二級為良好;三級為輕度污染;四級為中度污染;五級為重度污染;六級為嚴重污染.

某人根據(jù)環(huán)境監(jiān)測總站公布的數(shù)據(jù)記錄了某地某月連續(xù)10天的莖葉圖如圖所示:

1)利用訪樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算);

(2)若從樣本中的空氣質(zhì)量不佳()的這些天中,隨機地抽取三天深入分析各種污染指標,求這三天的空氣質(zhì)量等級互不相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足對任意,,恒有,且不恒為0.

(1)求的值;

(2)試判斷的奇偶性,并加以證明;

(3)若,恒有,求滿足不等式的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,曲線在點處的切線與直線垂直.

1)求的值;

(2)若對于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內(nèi)的淋雨量包括兩部分:(1PP的平行面(只有一個面淋雨)的淋雨量,假設其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記E移動過程中的總淋雨量,當移動距離d=100,面積S=時。

1)寫出的表達式

2)設0v≤10,0c≤5,試根據(jù)c的不同取值范圍,確定移動速度,使總淋雨量最少。

查看答案和解析>>

同步練習冊答案