在等差數(shù)列{an}中,a2+a3=7,a4+a5+a6=18.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Sn
考點:數(shù)列的求和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項公式列出方程組求出首項和公差,由此能求出數(shù)列{an}的通項公式.
(2)由bn=
1
anan+1
=
1
n+1
-
1
n+2
,利用裂項求和法能求出數(shù)列{bn}的前n項和Sn
解答: 解:(1)∵等差數(shù)列{an}中,a2+a3=7,a4+a5+a6=18,
2a1+3d=7
3a1+12d=18
,解得a1=2,d=1,
∴an=2+(n-1)×1=n+1.n∈N*
(2)bn=
1
anan+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,
Sn =
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2

=
n
2n+2
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=2x2(x-a).
(1)求函數(shù)f(x)在區(qū)間[1,2]上最小值h(a);
(2)對(1)中的h(a),若關(guān)于a的方程h(a)=k(a+1)有兩個不同的實數(shù)解,求實數(shù)k的取值范圍;
(3)若點A(a1,h(a1)),B(a2,h(a2)),C(a3,h(a3)),從左到右依次是函數(shù)y=h(a)圖象上三點,且這三點不共線,求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公差d≠0的等差數(shù)列{an}的前n項和為Sn,若a4是a3與a7的等比中項,且S8=32,求S10的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為正項等比數(shù)列,a2=3,a6=243,Sn為等差數(shù)列{bn}的前n項和,b1=3,S5=35.
(1)求{an}和{bn}的通項公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:|x-1|+|x-2|≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集是實數(shù)集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)當(dāng)a=-4時,求A∩B和A∪B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
3
3
,求
cos(
π
2
+θ)sin(π-θ)
cos(
2
+θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x+3y)n的展開式中各項系數(shù)的和等于(7a+b)10的展開式中二項式系數(shù)的和,則n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a-i
1+i
為實數(shù)(i為虛數(shù)單位),則實數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊答案