【題目】已知函數(shù)f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e為自然對數(shù)底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式f(x)≥n對任意x∈R都成立,求mn的最大值.

【答案】
(1)解: ,x∈R,f'(x)=2e2x+1﹣2m,

①當(dāng)m≤0時,f'(x)≥0,f(x)在R上單調(diào)遞增;

②當(dāng)m>0時,令f'(x)=0,得

x

f'(x)

0

+

f(x)

極小值

綜上所述,當(dāng)m≤0時,f(x)在R上單調(diào)遞增;

當(dāng)m>0時,f(x)在 上單調(diào)遞減,在 上單調(diào)遞增


(2)解:由(1)可知,若m≤0,函數(shù)f(x)在R上單調(diào)遞增,

f(x)在R上無最小值,與題意矛盾,舍去;

所以m>0,f(x)在 上單調(diào)遞減,在 上單調(diào)遞增,

f(x)在R上的最小值為

因為不等式f(x)≥n對任意x∈R都成立,

所以 ,其中m>0,

,m>0,

,m>0, ,

令φ'(m)=0,解得m=1,

m

(0,1)

1

(1,+∞)

φ'(m)

+

0

φ(m)

極大值

所以 ,故 ,

即mn的最大值為


【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(2)問題轉(zhuǎn)化為 ,其中m>0,得到 ,m>0,令 ,m>0,根據(jù)函數(shù)的單調(diào)性求出mn的最大值即可.
【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知幾何體的三視圖,用斜二測畫法畫出它的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的標(biāo)準(zhǔn)方程以及m的取值范圍;
(2)求證直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在 上的函數(shù)滿足 ,當(dāng) 時, .
(1)求證: 為奇函數(shù);
(2)求證: 上的增函數(shù);
(3)解關(guān)于 的不等式: (其中 為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角梯形ABCD如圖所示,分別以AB、BC、CD、DA所在直線為軸旋轉(zhuǎn),試說明所得幾何體的大致形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知g(x)是各項系數(shù)均為整數(shù)的多項式,f(x)=2x2﹣x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項系數(shù)之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,a為正常數(shù).
(1)若f(x)=lnx+φ(x),且 ,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 是上、下底邊長分別為2和6,高為 的等腰梯形,將它沿對稱軸 折疊,使二面角 為直二面角.

(1)證明: ;
(2)求二面角 的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(2,m)為其上一點,且|MF|=4.
(1)求p與m的值;
(2)如圖,過點F作直線l交拋物線于A、B兩點,求直線OA、OB的斜率之積.

查看答案和解析>>

同步練習(xí)冊答案