【題目】已知函數(shù).

(1)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)求證:對(duì)任意 ,都有成立;

(3)對(duì)于給定的正數(shù),有一個(gè)最大的正數(shù),使得整個(gè)區(qū)間上,不等式恒成立,求出的解析式.

【答案】(1);(2)見解析;(3)

【解析】試題分析:

(1)由題意令,則,可得,即可求解實(shí)數(shù)的取值范圍;

(2)對(duì)任意 ,作差化簡(jiǎn),即可.

(3)由題意得,由不等式恒成立得,結(jié)合二次函數(shù)的圖象,分類討論,即可求解的表達(dá)式.

試題解析:

(1)因?yàn)?/span>, 恒成立,令 ,則

所以,解得

(2)對(duì)任意 ,

,

(3)對(duì)稱軸, 由不等式恒成立得

因?yàn)?/span>,當(dāng),即時(shí),則 為減函數(shù).

由題意知: ,解得:

所以時(shí),

當(dāng),即時(shí),則總成立

由題意得: 為減函數(shù), 為增函數(shù),

,則

, 解得,所以時(shí),

綜上

點(diǎn)睛:本題考查了函數(shù)的綜合應(yīng)用,解答中涉及到不等式的恒成立問題的求解,不等式的性質(zhì)的應(yīng)用,以及二次函數(shù)的圖象與性質(zhì)的應(yīng)用,解答中把不等式的恒成立問題轉(zhuǎn)化為函數(shù)的最值問題是解答的關(guān)鍵,試題綜合性強(qiáng),屬于中檔試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為),上一點(diǎn),以為邊作等邊三角形,且、、三點(diǎn)按逆時(shí)針方向排列.

(Ⅰ)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),求點(diǎn)運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;

(Ⅱ)若曲線 ,經(jīng)過伸縮變換得到曲線,試判斷點(diǎn)的軌跡與曲線是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒有則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè)函數(shù),當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)賣場(chǎng)對(duì)市民進(jìn)行國(guó)產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)和頻數(shù)分布表和頻率分布直線圖如下:

分組(歲)

頻數(shù)

合計(jì)

(1)求頻率分布表中、的值,并補(bǔ)全頻率分布直方圖;

(2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國(guó)產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)(1,3),并且g(x)=xf(x)是偶函數(shù).
(1)求實(shí)數(shù)a、b的值;
(2)用定義證明:函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點(diǎn),如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)記過函數(shù)兩個(gè)極值點(diǎn)的直線的斜率為,問函數(shù)是否存在零點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點(diǎn).

(I)求證:PE⊥CD;

(II)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多面體的直觀圖,正(主)視圖,側(cè)(左)視圖如下所示,其中正(主)視圖、側(cè)(左)視圖為邊長(zhǎng)為a的正方形.
(1)請(qǐng)?jiān)谥付ǖ目騼?nèi)畫出多面體的俯視圖;
(2)若多面體底面對(duì)角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(3)求該多面體的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案