正三棱柱的左視圖如圖所示,則該正三棱柱的側(cè)面積為( 。
A、4
B、12
C、
4
3
3
D、24
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:通過左視圖,判斷幾何體的數(shù)據(jù),然后求解側(cè)面積.
解答: 解:∵正三棱柱的左視圖為:
,
正三棱柱的底面是正三角形,由圖知底面正三角形的高為
3
,
∴易求得正三角形的邊長為2,
∴正三棱柱的側(cè)面積為:2×2×3=12.
故選:B.
點評:本題考查三視圖側(cè)面積的求法,考查學(xué)生的視圖能力以及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,過A作AE垂直SB交SB于E點,作AH垂直SD交SD于H點,平面AEH交SC于K點,P是SA上的動點,且AB=1,SA=2.
(1)試證明不論點P在何位置,都有DB⊥PC;
(2)求PB+PH的最小值;
(3)設(shè)平面AEKH與平面ABCD的交線為l,求證:BD∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,計算
4+i
1+i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2kx+k2+1
x-k
的定義域為(0,+∞),值域為[2,+∞),則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
1
2
,則cos4α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{an2} (n∈N*)都是等差數(shù)列,若a1=2,則a22+a33+a44+a55等于( 。
A、60B、62C、63D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點F,A,B是拋物線上橫坐標(biāo)不相等的兩點,若AB的垂直平分線與x軸的交點是(4,0),則|AB|是最大值為( 。
A、2B、4C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向,對稱軸,頂點坐標(biāo),這個函數(shù)有最大值還是最小值?這個值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為5x2-4y2=20兩個焦點為F1,F(xiàn)2
(1)求此雙曲線的焦點坐標(biāo)和漸近線方程;
(2)若橢圓與此雙曲線有共同的焦點,且有一公共點P滿足|PF1|•|PF2|=6,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案