【題目】已知拋物線,是坐標(biāo)原點,點是拋物線上一點(與坐標(biāo)原點不重合),圓是以線段為直徑的圓。
(1)若點坐標(biāo)為,求拋物線方程以及圓方程;
(2)若,以線段為直徑的圓與拋物線交于點(與點不重合),求圓面積的最小值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是,(為參數(shù)).
(1)求直線被曲線C截得的弦長;
(2)從極點作曲線C的弦,求各弦中點軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)查機(jī)構(gòu)在某設(shè)置過街天橋的路口隨機(jī)調(diào)查了110人準(zhǔn)備過馬路的交通參與者對跨越護(hù)欄和走過街天橋的看法,得到如下列聯(lián)表:
男 | 女 | 合計 | |
走過街天橋 | 40 | 20 | 60 |
跨越護(hù)欄 | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
附:.
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
則可以得到正確的結(jié)論是( )
A.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”
B.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)國家“陽光體育運(yùn)動”的號召,某學(xué)校在了解到學(xué)生的實際運(yùn)動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,從高一高二(非畢業(yè)年級)與高三(畢業(yè)年級)共三個年級學(xué)生中按照的比例分層抽樣,收集位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖.(已知高一年級共有名學(xué)生)
(1)據(jù)圖估計該校學(xué)生每周平均體育運(yùn)動時間,并估計高一年級每周平均體育運(yùn)動時間不足小時的人數(shù);
(2)規(guī)定每周平均體育運(yùn)動時間不少于小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有位高三學(xué)生的每周平均體育運(yùn)動時間不少于小時,請完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間是否優(yōu)秀與畢業(yè)年級有關(guān)”?
非畢業(yè)年級 | 畢業(yè)年級 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 |
附:.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次田徑比賽中,35名運(yùn)動員的成績(單位:分鐘)的莖葉圖如圖所示。
若將運(yùn)動員按成績由好到差編為1—35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運(yùn)動員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P﹣ABC中,AC⊥BC,AC=BC=2,PA=PB=PC=3,O是AB中點,E是PB中點.
(1)證明:平面PAB⊥平面ABC;
(2)求點B到平面OEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com