8.設(shè)點(diǎn)M(3,t),若在圓O:x2+y2=6上存在兩點(diǎn)A,B,使得∠AMB=90°,則t的取值范圍是-$\sqrt{3}$≤t≤$\sqrt{3}$.

分析 由題意MA,MB是圓的切線時(shí),|OM|=2$\sqrt{3}$,則9+t2≤12,即可求出t的取值范圍.

解答 解:由題意MA,MB是圓的切線時(shí),|OM|=2$\sqrt{3}$,
∴9+t2≤12,
∴-$\sqrt{3}$≤t≤$\sqrt{3}$,
故答案為-$\sqrt{3}$≤t≤$\sqrt{3}$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查兩點(diǎn)間距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),過F作傾斜角為60°的直線l,直線l與雙曲線交于A,與y軸交于點(diǎn)B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,則該雙曲線的離心率等于( 。
A.$\sqrt{3}$+1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{3}}{2}$+1D.$\frac{\sqrt{3}-1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈R,x2-x+1≤0,則( 。
A.¬p:?x0∈R,x02-x0+1≤0B.¬p:?x∈R,x2-x+1≥0
C.¬p:?x∈R,x2-x+1>0D.¬p:?0x∈R,x02-x0+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.高二年級(jí)有男生560人,女生420人,為了解學(xué)生職業(yè)規(guī)劃,現(xiàn)用分層抽樣的方法從該年級(jí)全體學(xué)生中抽取一個(gè)容量為280人的樣本,則此樣本中男生人數(shù)為( 。
A.120B.160C.280D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某中學(xué)興趣小組為調(diào)查該校學(xué)生對(duì)學(xué)校食堂的某種食品喜愛與否是否與性別有關(guān),隨機(jī)詢問了100名性別不同的學(xué)生,得到如下的2×2列聯(lián)表:
  男生 女生 總計(jì)
 喜愛 3020  50
 不喜愛 20 30 50
 總計(jì) 50 50 100
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635
根據(jù)以上數(shù)據(jù),該數(shù)學(xué)興趣小組有多大把握認(rèn)為“喜愛該食品與性別有關(guān)”?( 。
A.99%以上B.97.5%以上C.95%以上D.85%以上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題:“若$\sqrt{x}$>1,則lnx>0”的否命題為( 。
A.若$\sqrt{x}$>1,則lnx≤0B.若$\sqrt{x}$≤1,則lnx>0C.若$\sqrt{x}$≤1,則lnx≤0D.若lnx>0,則$\sqrt{x}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知A(-3,0),B(3,0),動(dòng)點(diǎn)M滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=1,記動(dòng)點(diǎn)M的軌跡為C.
(1)求C的方程;
(2)若直線l:y=kx+4與C交于P,Q兩點(diǎn),且|PQ|=6,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義在R上的偶函數(shù)f(x)滿足,當(dāng)x<0時(shí),f(x)=$\frac{x}{x-1}$,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率為$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將邊長為2的正方形ABCD沿對(duì)角線AC折起,使得BD=2,則三棱錐D-ABC的頂點(diǎn)D到底面ABC的距離為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案