【題目】手機中的“運動”具有這樣的功能,不僅可以看自己每天的運動步數(shù),還可以看到朋友圈里好友的步數(shù).小明的朋友圈里有大量好友參與了“運動”,他隨機選取了其中30名,其中男女各15名,記錄了他們某一天的走路步數(shù),統(tǒng)計數(shù)據(jù)如下表所示:

0

2

4

7

2

1

3

7

3

1

(Ⅰ)以樣本估計總體,視樣本頻率為概率,在小明朋友圈里的男性好友中任意選取3名,其中走路步數(shù)低于7500步的有名,求的分布列和數(shù)學(xué)期望;

(Ⅱ)如果某人一天的走路步數(shù)超過7500步,此人將被“運動”評定為“積極型”,否則為“消極”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

消極型

總計

總計

附:.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

【答案】(Ⅰ)見解析;(Ⅱ)見解析

【解析】試題分析:

(Ⅰ)由題意得在小明的男性好友中任意選取1名,其中走路步數(shù)低于7500的概率為,

然后根據(jù)題意可得的所有可能取值分別為0,1,2,3,分別求出概率后可得的分布列,然后可求得期望.(Ⅱ)結(jié)合題意可完成列聯(lián)表,由表中數(shù)據(jù)得到,故可得沒有以上的把握認為“評定類型”與“性別”有關(guān).

試題解析:

(Ⅰ)在小明的男性好友中任意選取1名,其中走路步數(shù)低于7500的概率為.

由題意得的所有可能取值分別為0,1,2,3,

,

,

,

故隨機變量的分布列為

0

1

2

3

.

(Ⅱ)完成列聯(lián)表

積極型

消極型

總計

9

6

15

4

11

15

總計

13

17

30

由表中數(shù)據(jù)可得 .

∴沒有以上的把握認為“評定類型”與“性別”有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中有4個紅球,6個綠球,采用不放回方式從中依次隨機地取出2個球.

1)求第二次取到紅球的概率;

2)求兩次取到的球顏色相同的概率;

3)如果是4個紅球,n個綠球,已知取出的2個球都是紅球的概率為,那么n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖,直線在原點處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.

(1)求的解析式;

(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示不超過的最大整數(shù),例,.已知函數(shù),.

(1)求函數(shù)的定義域;

(2)求證:當(dāng)時,總有,并指出當(dāng)為何值時取等號;

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁、戊五位媽媽相約各帶一個小孩去觀看花卉展,她們選擇共享電動車出行,每輛電動車只能載兩人,其中孩子們表示都不坐自己媽媽的車,甲的小孩一定要坐戊媽媽的車,則她們坐車不同的搭配方式有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是某池塘中的浮萍蔓延的面積與時間月)的關(guān)系有以下敘述:

①這個指數(shù)函數(shù)的底數(shù)是2;

②第5個月時,浮萍的面積就會超過

③浮萍從蔓延到需要經(jīng)過1.5個月;

④浮萍每個月增加的面積都相等;

⑤若浮萍蔓延到所經(jīng)過的時間分別為.其中正確的是

A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,為線段上一點,的中點.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案