【題目】如圖1,在邊長為2的正方形中, 是邊的中點.將沿折起使得平面平面,如圖2, 是折疊后的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的平面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.
(1)求點的軌跡方程;
(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點,直線.
(1)求以點A為圓心,以為半徑的圓與直線相交所得弦長;
(2)設圓的半徑為1,圓心在上.若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月、兩種移動支付方式的使用情況,從全校學生中隨機抽取了人,發(fā)現樣本中、兩種支付方式都不使用的有人,樣本中僅使用和僅使用的學生的支付金額分布情況如下:
支付金額(元) 支付方式 | 大于 | ||
僅使用 | 人 | 人 | 人 |
僅使用 | 人 | 人 | 人 |
(1)從樣本僅使用和僅使用的學生中各隨機抽取人,以表示這人中上個月支付金額大于元的人數,求的分布列和數學期望;
(2)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用的學生中,隨機抽查人,發(fā)現他們本月的支付金額都大于元.根據抽查結果,能否認為樣本僅使用的學生中本月支付金額大于元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為(為參數,),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)已知直線與曲線交于兩點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,求銳二面角Q-PB-A的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com