精英家教網 > 高中數學 > 題目詳情

【題目】如圖1,在邊長為2的正方形中, 是邊的中點.將沿折起使得平面平面,如圖2, 是折疊后的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的平面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)取中點,根據平行四邊形性質可得,再根據線面平行判定定理得平面;(2)求二面角,一般利用空間向量進行求解,先根據條件建立空間直角坐標系,設立各點坐標,利用方程組解出各面法向量,利用向量數量積求法向量夾角,最后根據二面角與向量夾角之間相等或互補關系求解.

試題解析:(Ⅰ) 證明:取中點,連結,

中點,∴ , ,

∴四邊形是平行四邊形

,又平面, 平面,

平面

(Ⅱ)如圖示以為坐標原點,

建立空間直角坐標系

則由已知得,

,

設平面的法向量為

解得一個法向量為

設平面的法向量為

解得一個法向量為

,

∴二面角的平面角的余弦值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數是定義在R上的周期為2的奇函數,時,的值是____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,點,直線.

1)求以點A為圓心,以為半徑的圓與直線相交所得弦長;

2)設圓的半徑為1,圓心在.若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月兩種移動支付方式的使用情況,從全校學生中隨機抽取了人,發(fā)現樣本中、兩種支付方式都不使用的有人,樣本中僅使用和僅使用的學生的支付金額分布情況如下:

支付金額(元)

支付方式

大于

僅使用

僅使用

1)從樣本僅使用和僅使用的學生中各隨機抽取人,以表示這人中上個月支付金額大于元的人數,求的分布列和數學期望;

2)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用的學生中,隨機抽查人,發(fā)現他們本月的支付金額都大于.根據抽查結果,能否認為樣本僅使用的學生中本月支付金額大于元的人數有變化?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.

1)求的值;

2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?

文科生

理科生

合計

獲獎

6

不獲獎

合計

400

3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數,),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)已知直線與曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA底面ABC,ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.

(1)求證:PA平面QBC;

(2)若PQ平面QBC,求銳二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線y2=4x的焦點作直線AB交拋物線于A、B,求AB中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案