【題目】在測(cè)試中,客觀題難題的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度(.規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

【答案】(1)見解析,24 (2) 3該次測(cè)試的難度預(yù)估是合理的.

【解析】試題分析:(1)根據(jù)題中數(shù)據(jù),統(tǒng)計(jì)各題答對(duì)的人數(shù),進(jìn)而根據(jù)Pi ,得到難度系數(shù);

(2)根據(jù)古典概型概率計(jì)算公式,可得從編號(hào)為155人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;(3)計(jì)算出S值與0.05比較,可得答案.

試題解析:

(1) 每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度如下表:

所以,估計(jì)120人中有人答對(duì)第5.

(2) 記編號(hào)為的學(xué)生為,從這5人中隨機(jī)抽取2人,不同的抽取方法有10.

其中恰好有1人答對(duì)第5題的抽取方法為,共6.

所以,從抽樣的10名學(xué)生中隨機(jī)抽取2名答對(duì)至少4道題的學(xué)生,恰好有1人答對(duì)第5題的概率為.

3為抽樣的10名學(xué)生中第題的實(shí)測(cè)難度,用作為這120名學(xué)生第題的實(shí)測(cè)難度.

因?yàn)?/span>,所以,該次測(cè)試的難度預(yù)估是合理的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求f(x)的最大值;

2)設(shè)函數(shù),若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求a的取值范圍;

3)若數(shù)列的各項(xiàng)均為正數(shù),,.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),若的極大值小于整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù) 處的切線方程為,求實(shí)數(shù)的值;

2)設(shè),當(dāng)時(shí),求的最小值;

3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】騰飛中學(xué)學(xué)生積極參加科技創(chuàng)新大賽,在市級(jí)組織的大賽中屢創(chuàng)佳績(jī).為了組織學(xué)生參加下一屆市級(jí)大賽,了解學(xué)生報(bào)名參加社會(huì)科學(xué)類比賽(以下稱為A類比賽)和自然科學(xué)類比賽(以下稱為B類比賽)的意向,校團(tuán)委隨機(jī)調(diào)查了60名男生和40名女生調(diào)查結(jié)果如下:60名男生中,15名不準(zhǔn)備參加比賽,5名準(zhǔn)備參加A類比賽和B類比賽,剩余的男生有準(zhǔn)備參加A類比賽,準(zhǔn)備參加B類比賽,40名女生中,10名不準(zhǔn)備參加比賽,25名準(zhǔn)備參加A類比賽,5名準(zhǔn)備參加B類比賽.

1)根據(jù)統(tǒng)計(jì)數(shù)據(jù),完成如2×2列聯(lián)表(A類比賽和B類比賽都參加的學(xué)生需重復(fù)統(tǒng)計(jì)):

A類比賽

B類比賽

總計(jì)

男生

女生

總計(jì)

2)能否有99%的把握認(rèn)為學(xué)生參加A類比賽或B類比賽與性別有關(guān)?

附:K2.

PK2k

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

收費(fèi)比例

0.95

0.90

0.85

0.80

現(xiàn)隨機(jī)抽取了100位會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問(wèn)題:

1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率

2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽(yáng)馬;

(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)的收集和整理在當(dāng)今社會(huì)起到了舉足輕重的作用,它用統(tǒng)計(jì)的方法來(lái)幫助人們分析以往的行為習(xí)慣,進(jìn)而指導(dǎo)人們接下來(lái)的行動(dòng).

某支足球隊(duì)的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),如下表:

場(chǎng)次

第一場(chǎng)

第二場(chǎng)

第三場(chǎng)

第四場(chǎng)

第五場(chǎng)

28

33

36

38

45

39

31

43

39

33

1)根據(jù)這兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個(gè)位);分別在平面直角坐標(biāo)系中畫出兩名球員的傳球成功次數(shù)的散點(diǎn)圖;

2)求出甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù)的平均值和方差;

3)主教練根據(jù)球員每場(chǎng)比賽的傳球成功次數(shù)分析出球員在場(chǎng)上的積極程度和技術(shù)水平,同時(shí)根據(jù)多場(chǎng)比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認(rèn)為主教練應(yīng)選哪位球員?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案