設(shè)函數(shù)
.
(1)若
,試求函數(shù)
的單調(diào)區(qū)間;
(2)過坐標(biāo)原點(diǎn)
作曲線
的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),求
的取值范圍.
(1)
的減區(qū)間為
,增區(qū)間
(2)導(dǎo)數(shù)的幾何意義的運(yùn)用,理解切線的斜率即為該點(diǎn)的導(dǎo)數(shù)值既可以得到求證。
(3)
試題分析:解: (1)
時(shí),
1 分
3分
的減區(qū)間為
,增區(qū)間
5分
(2)設(shè)切點(diǎn)為
,
切線的斜率
,又切線過原點(diǎn)
7分
滿足方程
,由
圖像可知
有唯一解
,切點(diǎn)的橫坐標(biāo)為1; -8分
或者設(shè)
,
,且
,方程
有唯一解 -9分
(3)
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),
則
,所以
---(*) 10分
若
,則
在
遞減,
即不等式
恒成立 11分
若
,
在
上遞增,
,即
,
上遞增,
這與
,
矛盾 13分
綜上所述,
14分
解法二:
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),
則
,所以
10分
顯然
,不等式成立
當(dāng)
時(shí),
恒成立 11分
設(shè)
設(shè)
在
上遞增,
所以
12分
在
上遞減,
所以
14分
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
。
(Ⅰ)若
在
是增函數(shù),求b的取值范圍;
(Ⅱ)若
在
時(shí)取得極值,且
時(shí),
恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(I)證明當(dāng)
(II)若不等式
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)定義在
上的函數(shù)
是最小正周期為
的偶函數(shù),
是
的導(dǎo)函數(shù).當(dāng)
時(shí),
;當(dāng)
且
時(shí),
.則函數(shù)
在
上的零點(diǎn)個(gè)數(shù)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)函數(shù)
,(
是互不相等的常數(shù)),則
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的圖象在點(diǎn)
處的切線斜率為
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)判斷方程
根的個(gè)數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點(diǎn)
,使得曲線
在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
為非零常數(shù)).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的最小值;
(Ⅱ)若
恒成立,求
的值;
(Ⅲ)對(duì)于
增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)
(其中
),
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的導(dǎo)數(shù)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)
時(shí),若
在區(qū)間
上的最小值為-2,求實(shí)數(shù)
的取值范圍;
(3)若對(duì)任意
,且
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>