設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.
(1)的減區(qū)間為,增區(qū)間
(2)導(dǎo)數(shù)的幾何意義的運(yùn)用,理解切線的斜率即為該點(diǎn)的導(dǎo)數(shù)值既可以得到求證。
(3)

試題分析:解: (1)時(shí),          1 分
                   3分

的減區(qū)間為,增區(qū)間                 5分
(2)設(shè)切點(diǎn)為
切線的斜率,又切線過原點(diǎn)
           7分
滿足方程,由圖像可知
有唯一解,切點(diǎn)的橫坐標(biāo)為1;              -8分
或者設(shè),
,且,方程有唯一解         -9分
(3),若函數(shù)在區(qū)間(0,1]上是減函數(shù),
,所以---(*) 10分


,則遞減,
即不等式恒成立                11分
,
上遞增,

,即,上遞增,
這與,矛盾               13分
綜上所述,                                    14分
解法二: ,若函數(shù)在區(qū)間(0,1]上是減函數(shù),
,所以 10分
顯然,不等式成立
當(dāng)時(shí),恒成立            11分
設(shè)
設(shè)
上遞增, 所以         12分
上遞減,
所以             14分
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時(shí)取得極值,且時(shí),恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(I)證明當(dāng) 
(II)若不等式取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),的導(dǎo)函數(shù).當(dāng)時(shí),;當(dāng)時(shí),.則函數(shù)上的零點(diǎn)個(gè)數(shù)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),(是互不相等的常數(shù)),則等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在點(diǎn)處的切線斜率為
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷方程根的個(gè)數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對(duì)于增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)(其中),
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)數(shù)為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若在區(qū)間上的最小值為-2,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意,且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案