(理)已知圓的方程是x2+(y-1)2=1,若以坐標原點O為極點,x軸的正半軸為極軸,則該圓的極坐標方程可寫為
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:根據(jù)x=ρcosθ、y=ρsinθ,把所給曲線的直角坐標方程化為極坐標方程.
解答: 解:把x=ρcosθ,y=ρsinθ,代入圓的方程x2+(y-1)2=1,
化簡可得 ρ=2sinθ,
故答案為:ρ=2sinθ.
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a1=3,a4+a5+a6=45.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
1
anan+1
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓C經(jīng)過點P(
2
,
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點,則圓C的極坐標方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在正實數(shù)M,對于任意x∈(1,+∞),都有|f(x)|≤M,則稱函數(shù)f(x)在(1,+∞)上是有界函數(shù).下列函數(shù):①f(x)=
1
x-1
;②f(x)=
x
x2+1
;③f(x)=
lnx
x
;④f(x)=xsinx,其中“在(1,+∞)上是有界函數(shù)”的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)同時滿足性質(zhì):①對任何x∈R,均有f(x3)=[f(x)]3成立;②對任何x1,x2∈R,當且僅當x1=x2時,有f(x1)=f(x2).則f(-1)+f(0)+f(1)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的棱長為2的正方體ABCD-A1B1C1D1中,作與平面ACD1平行的截面,則截得的三角形中面積最大的值是
 
;截得的平面圖形中面積最大的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線AB與拋物線y2=2x交于A,B兩點,M是AB的中點,C是拋物線上的點,且使得
CA
CB
取最小值,拋物線在點C處的切線為l,則( 。
A、CM⊥AB
B、CM⊥l
C、CA⊥CB
D、CM=
1
2
AB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xsinx+cosx的導函數(shù)原點處的部分圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,E,F(xiàn)分別為PA,BD中點,PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E-DF-A的余弦值;
(Ⅲ)在棱PC上是否存在一點G,使GF⊥平面EDF?若存在,指出點G的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案