【題目】已知函數(shù)的圖象上的一個(gè)最低點(diǎn)為,周期為.
(1)求的解析式;
(2)將的圖象上的所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后再將所得的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象,寫出函數(shù)的解析式;
(3)當(dāng)時(shí),求函數(shù)的最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的四棱錐中,底面為矩形, , 的中點(diǎn)為, ,異面直線與所成的角為, 平面.
(1)證明: 平面;
(2)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;
(2) 若由線性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請(qǐng)根據(jù)4月7日,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下表格記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.
甲組 | 9 | 9 | 11 | 11 |
乙組 | 8 | 9 | 10 |
(1)如果,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=.
(1)化簡f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】取數(shù)游戲:每次游戲中,游戲人按動(dòng)游泳按鈕,就從如圖:的三個(gè)窗口中各彈出一個(gè)數(shù)字,其中:最左邊窗口可隨機(jī)彈出數(shù)字4或3,中間窗口可隨機(jī)彈出3或2,最右邊窗口可隨機(jī)彈出2或1.若彈出的三個(gè)數(shù)字為“順子”(如:432),則可獲獎(jiǎng)10元,若有相鄰兩位數(shù)字相同,則可獲獎(jiǎng)8元,其他情況獲獎(jiǎng)-2元.甲玩了8次游戲后,乙問甲的獲獎(jiǎng)情況,甲說:“23元有余,28元不足,3除不盡.”那么甲在這8次游戲中得到“順子”、“相鄰兩位數(shù)字相同”、“其他情況”的次數(shù)依次為( )
A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一場娛樂晚會(huì)上,有5位民間歌手(1到5號(hào))登臺(tái)演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒有偏愛,因此在1至5號(hào)中選3名歌手.
(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(2)表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求“”的事件概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)存在兩個(gè)極值點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)保持不變),得到函數(shù)的圖象,求函數(shù)在區(qū)間的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com