【題目】據(jù)統(tǒng)計,某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購置貨車專門運營從甲地到乙地的貨物,一輛貨車每天只能運營一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)該購置幾輛貨
車?

【答案】
(1)解:在區(qū)間[120,160)的頻率為 ,

該物流公司每天從甲地到乙地平均可配送的貨物量:


(2)解:從甲地到乙地的可配送貨物量X在[40,80),[80,120),[120,160),[160,200)的概率分別為

設(shè)運輸公司每天的營業(yè)利潤為Y.

①若購置1輛車,則Y的值為1000;

②若購置2輛車,則Y的可能取值為2000,800,其分而列為

Y

2000

800

P

③若購置3輛車,則Y的可能取值為3000,1800,600,其分布列為

Y

3000

1800

600

P

;

④若購置4輛車,則Y的可能取值為4000,2800,1600,400其分布列為

Y

4000

2800

1600

400

P

;

因為2400>2350>1850>1000,

所以為使運輸公司每天的營業(yè)利潤最大,該公司應(yīng)購置3輛車


【解析】(1)計算配送量X在[120,60)上的概率,使用組中值代替各小組的平均值,利用加權(quán)平均數(shù)公式計算;(2)設(shè)每天的營業(yè)利潤為Y,對購置車輛數(shù)進(jìn)行依次討論,分別計算E(Y),根據(jù)E(Y)的大小關(guān)系作出結(jié)論.
【考點精析】通過靈活運用頻率分布直方圖和離散型隨機(jī)變量及其分布列,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

①原命題為真,它的否命題為假;

②原命題為真,它的逆命題不一定為真;

③一個命題的逆命題為真,它的否命題一定為真;

④一個命題的逆否命題為真,它的否命題一定為真.

A. ①② B. ②③

C. ③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,短軸長為2. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若圓O:x2+y2=1的切線l與曲線E相交于A、B兩點,線段AB的中點為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點,E為AD的中點.將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A﹣EF﹣D與二面角B﹣CD﹣E的大小都等于90°,得到如圖2所示的多面體.
(1)在多面體中,求證:A,B,D,E四點共同面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于(
A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:

B餐廳分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35


(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:

B餐廳分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35

定義學(xué)生對餐廳評價的“滿意度指數(shù)”如下:

分?jǐn)?shù)

[0,30)

[30,50)

[50,60]

滿意度指數(shù)

0

1

2


(Ⅰ)在抽樣的100人中,求對A餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計其對A餐廳評價的“滿意度指數(shù)”比對B餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= +c(e=2.71828…是自然對數(shù)的底數(shù),c∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于x的方程|lnx|=f(x)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓G: 的兩個焦點分別為F1和F2 , 短軸的兩個端點分別為B1和B2 , 點P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當(dāng)b變化時,給出下列三個命題: ①點P的軌跡關(guān)于y軸對稱;
②存在b使得橢圓G上滿足條件的點P僅有兩個;
③|OP|的最小值為2,
其中,所有正確命題的序號是

查看答案和解析>>

同步練習(xí)冊答案