【題目】已知函數(shù).
(1)當(dāng)時(shí),求的圖象在處的切線方程;
(2)當(dāng)時(shí),求證:在上有唯一零點(diǎn).
【答案】(1);(2)證明見解析
【解析】
(1)當(dāng)時(shí),函數(shù),分別求出及的值,結(jié)合導(dǎo)數(shù)的幾何意義,可求出的圖象在處的切線方程;
(2)對(duì)函數(shù)求導(dǎo),判斷單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可知,然后構(gòu)造函數(shù),進(jìn)而可證明,即,進(jìn)而由,證明,又,結(jié)合單調(diào)性可知在上有唯一零點(diǎn).
(1)當(dāng)時(shí),函數(shù),定義域?yàn)?/span>.
則,則,.
故的圖象在處的切線方程為,即.
(2)證明:.
因?yàn)?/span>,令,得;令,得.
又,在上單調(diào)遞減,在上單調(diào)遞增.
所以.
令.
顯然在上單調(diào)遞減.
又.
所以,即.
.
令,
則.
令,則,所以在上單調(diào)遞增,
則,所以,,故,
所以在上單調(diào)遞增,,所以.
又,結(jié)合單調(diào)性可知在上有唯一零點(diǎn),命題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在A,B實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在A,B試驗(yàn)地隨機(jī)抽選各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,以頻率作為概率,若在A,B兩塊實(shí)驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與過其右焦點(diǎn)F(1,0)的直線交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,且直線l與直線OD的斜率之積為.
(1)求C的方程;
(2)設(shè)橢圓的左頂點(diǎn)為M,kMA,kMB分別表示直線MA,MB的斜率,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中為了了解高三學(xué)生每天自主參加體育鍛煉的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,其中女生有55名.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生自主參加體育鍛煉時(shí)間的頻率分布直方圖:
將每天自主參加體育鍛煉時(shí)間不低于40分鐘的學(xué)生稱為體育健康類學(xué)生,已知體育健康類學(xué)生中有10名女生.
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為達(dá)到體育健康類學(xué)生與性別有關(guān)?
非體育健康類學(xué)生 | 體育健康類學(xué)生 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)將每天自主參加體育鍛煉時(shí)間不低于50分鐘的學(xué)生稱為體育健康類學(xué)生,已知體育健康類學(xué)生中有2名女生,若從體育健康類學(xué)生中任意選取2人,求至少有1名女生的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形且,側(cè)面底面,且側(cè)面是正三角形,是中點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形且,側(cè)面底面,且側(cè)面是正三角形,是中點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請(qǐng)完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計(jì) | |
女員工 | 16 | ||
男員工 | 14 | ||
合計(jì) | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2,
(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)
(2)直線l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)滿足以下三個(gè)條件:①對(duì)于任意的,都有;②對(duì)于任意的都有③函數(shù)的圖象關(guān)于y軸對(duì)稱,則下列結(jié)論中正確的是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com