【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在A,B實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在A,B試驗(yàn)地隨機(jī)抽選各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,以頻率作為概率,若在A,B兩塊實(shí)驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
【答案】(1),82.5;(2)分布列見解析,;(3)列聯(lián)表見解析,有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系.
【解析】
(1)根據(jù)各段的頻率之和為1,可得,然后假設(shè)中位數(shù),并根據(jù)在中位數(shù)的左右兩邊的頻率均為,簡(jiǎn)單計(jì)算,可得結(jié)果.
(2)假設(shè)所抽取的花苗為優(yōu)質(zhì)花苗的顆數(shù)為X,可知,然后計(jì)算相對(duì)應(yīng)顆數(shù)的概率,畫出分布列,最后根據(jù)期望的計(jì)算公式,可得結(jié)果.
(3)先計(jì)算出優(yōu)質(zhì)花苗的頻率,然后可得優(yōu)質(zhì)花苗的顆數(shù),進(jìn)一步得出其他的數(shù)據(jù),最后計(jì)算,根據(jù)表格進(jìn)行比較,可得結(jié)果.
(1)由,
解得.
令得分中位數(shù)為x,由,
解得.
故綜合評(píng)分的中位數(shù)為82.5.
(2)由(1)與頻率分布直方圖 ,
優(yōu)質(zhì)花苗的頻率為 ,即概率為,
設(shè)所抽取的花苗為優(yōu)質(zhì)花苗的顆數(shù)為X,則,
;;
;.
其分布列為:
X | 0 | 1 | 2 | 3 |
P |
所以,所抽取的花苗為優(yōu)質(zhì)花苗的數(shù)學(xué)期望.
(3)結(jié)合(1)與頻率分布直方圖,
優(yōu)質(zhì)花苗的頻率為,
則樣本中,優(yōu)質(zhì)花苗的顆數(shù)為60棵,列聯(lián)表如下表所示:
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | 30 | 50 |
乙培育法 | 40 | 10 | 50 |
合計(jì) | 60 | 40 | 100 |
可得.
所以,有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方形中,,,現(xiàn)將長(zhǎng)方形沿對(duì)角線折起,使,得到一個(gè)四面體,如圖所示.
(1)試問:在折疊的過程中,異面直線與能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請(qǐng)說明理由;
(2)當(dāng)四面體體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若,關(guān)于的方程有三個(gè)不同的實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),mR.
(1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;
(2)若m>0,求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.
(1)已知橢圓的離心率為,線段中點(diǎn)的橫坐標(biāo)為,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】癌癥是迄今為止人類尚未攻克的疾病之一,目前,癌癥只能盡量預(yù)防.某醫(yī)學(xué)中心推出了一種抗癌癥的制劑,現(xiàn)對(duì)20位癌癥病人,進(jìn)行醫(yī)學(xué)試驗(yàn)測(cè)試藥效,測(cè)試結(jié)果分為“病人死亡”和“病人存活”,現(xiàn)對(duì)測(cè)試結(jié)果和藥物劑量(單位:)進(jìn)行統(tǒng)計(jì),規(guī)定病人在服用(包括)以上為“足量”,否則為“不足量”,統(tǒng)計(jì)結(jié)果顯示,這20病人
中“病人存活”的有13位,對(duì)病人服用的藥物劑量統(tǒng)計(jì)如下表:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的藥物劑量不足的病人共1位.
(1)完成下列列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“病人存活”與服用藥物的劑量足量有關(guān)?
服用藥物足量 | 服用藥物不足量 | 合計(jì) | |
病人存活 | 1 | ||
病人死亡 | |||
合計(jì) | 20 |
(2)若在該樣本“服用藥物劑量不足”的病人中隨機(jī)抽取3位,求這三人中恰有1位“病人存活”的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的圖象在處的切線方程;
(2)當(dāng)時(shí),求證:在上有唯一零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com