A. | 4條 | B. | 3條 | C. | 2條 | D. | 1條 |
分析 將兩圓化成標(biāo)準(zhǔn)方程,可得它們的圓心坐標(biāo)和半徑大小,從而得到兩圓的圓心距等于13,恰好介于兩圓的半徑差與半徑和之間,由此可得兩圓位置關(guān)系是相交,從而得到它們有兩條公切線.
解答 解:∵圓C1:x2+y2-6x+16y-48=0化成標(biāo)準(zhǔn)方程,得(x-3)2+(y+8)2=121
∴圓C1的圓心坐標(biāo)為(3,-8),半徑r1=11
同理,可得圓C2的圓心坐標(biāo)為(-2,4),半徑r2=8
因此,兩圓的圓心距|C1C2|=$\sqrt{(3+2)^{2}+(-8-4)^{2}}$=13
∵|r1-r2|<|C1C2|<r1+r2=16
∴兩圓的位置關(guān)系是相交,可得兩圓有2條公切線
故選:C
點(diǎn)評 本題給出兩個(gè)圓的一般式方程,探求兩圓的位置關(guān)系并找出公切線的條數(shù),著重考查了圓的一般式方程與標(biāo)準(zhǔn)方程的互化和兩圓位置關(guān)系的判斷等知識點(diǎn),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2i∈P | B. | $\frac{2}{i}$∈P | C. | ($\sqrt{2}$i)2∈P | D. | $\frac{2}{{i}^{3}}$∈P |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan$\frac{4π}{7}$>tan$\frac{3π}{7}$ | B. | tan$\frac{2π}{5}$<tan$\frac{3π}{5}$ | ||
C. | tan(-$\frac{13π}{7}$)>tan(-$\frac{15π}{8}$) | D. | tan(-$\frac{13π}{4}$)<tan(-$\frac{12π}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com