精英家教網 > 高中數學 > 題目詳情
若函數f(x)=(1-x2)(x2+ax+b)的圖象關于直線x=-2對稱,則a,b的值分別為(  )
A、8,15B、15,8
C、3,4D、-3,-4
考點:函數的圖象
專題:函數的性質及應用
分析:由題意得f(-1)=f(-3)=0且f(1)=f(-5)=0,由此求出a和b的值.
解答: 解:∵函數f(x)=(1-x2)(x2+ax+b)的圖象關于直線x=-2對稱,
∴f(-1)=f(-3)=0,且f(1)=f(-5)=0,
即[1-(-3)2][(-3)2+a•(-3)+b]=0,且[1-(-5)2][(-5)2+a•(-5)+b]=0,
解得a=8,b=15,
故選:A.
點評:本題主要考查函數圖象的對稱性,體現了轉化的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在下列命題中
①函數f(x)=
1
x
在定義域內為單調遞減函數;
②已知定義在R上周期為4的函數f(x)滿足f(2-x)=f(2+x),則f(x)一定為偶函數;
③定義在R上的函數f(x)既是奇函數又是以2為周期的周期函數,則f(1)+f(4)+f(7)=0;
④已知函數f(x)=ax3+bx2+cx+d(a≠0),則a+b+c=0是f(x)有極值的充分不必要條件;
⑤已知函數f(x)=x-sinx,若a+b>0,則f(a)+f(b)>0.
其中正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)在定義域R是偶函數,f(1)=0,當x>0時有xf′(x)+f(x)>0則x2f(x)>0的解集為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:函數f(x)=
ax
1+ax
-
1
2
(a>0且a≠1)
(1)判斷函數f(x)的奇偶性.
(2)記號[m]表示不超過實數m的最大整數(如:[0.3]=0,[-0.3]=-1),求函數[f(x)]+[f(-x)]的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

寫出直線
3
x+y+1=0關于直線y=-x對稱的直線的方程
 

查看答案和解析>>

科目:高中數學 來源: 題型:

德國數學家洛薩•科拉茨1937年提出了一個猜想:任給一個正整數n,如果它是偶數,就將它減半;如果它是奇數,則將它乘3再加1,不斷重復這樣的運算,經過有限步后,一定可以得到1(出現1后運算結束).現在請你研究:如果對正整數5(首項),按照上述規(guī)則實施變換,所得到的數組成一個數列(末項為1),則這個數列的各項之和為多少( 。
A、34B、35C、36D、37

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在正整數有序對集合上的函數f滿足:①f(x,x)=x,②f(x,y)=f(y,x),③(x+y)f(x,y)=yf(x,x+y),則f(4,8)=
 
,f(12,16)+f(16,12)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

過曲線y=x3+1上一點(1,0)且與該點處的切線垂直的直線方程是(  )
A、y=3x-3
B、y=
1
3
x-
1
3
C、y=-
1
3
x+
1
3
D、y=-3x+3

查看答案和解析>>

科目:高中數學 來源: 題型:

當x>0,y>0時,“x+y≤2”是“xy≤1”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習冊答案