【題目】已知圓,直線.軸交于兩點(diǎn),是圓上不同于的一動(dòng)點(diǎn),所在直線分別與交于.

(1)當(dāng)時(shí),求以為直徑的圓的方程;

2)證明:以為直徑的圓截軸所得弦長(zhǎng)為定值.

【答案】1;(2)證明見(jiàn)解析.

【解析】

(1)討論點(diǎn)的位置,根據(jù)直線的方程,直線的方程分別與直線方程聯(lián)立,得出的坐標(biāo),進(jìn)而得出圓心坐標(biāo)以及半徑,即可得出該圓的方程;

(2)討論點(diǎn)的位置,根據(jù)直角三角形的邊角關(guān)系得出的坐標(biāo),進(jìn)而得出圓心坐標(biāo)以及半徑,再由圓的弦長(zhǎng)公式化簡(jiǎn)即可證明.

(1)由圓的方程可知,

①當(dāng)點(diǎn)在第一象限時(shí),如下圖所示

當(dāng)時(shí),

所以直線的方程為

,解得

直線的方程為

,解得

的中點(diǎn)坐標(biāo)為

所以以為直徑的圓的方程為

②當(dāng)點(diǎn)在第四象限時(shí),如下圖所示

當(dāng)時(shí),

所以直線的方程為

,解得

直線的方程為

,解得

的中點(diǎn)坐標(biāo)為,

所以以為直徑的圓的方程為

綜上,以為直徑的圓的方程為

2)①當(dāng)點(diǎn)在圓上半圓運(yùn)動(dòng)時(shí),取直線軸于點(diǎn),如下圖所示

設(shè),則

則以為直徑的圓的圓心坐標(biāo)為,半徑

所以以為直徑的圓截軸所得弦長(zhǎng)為

②當(dāng)點(diǎn)在圓下半圓運(yùn)動(dòng)時(shí),取直線軸于點(diǎn),如下圖所示

設(shè),則

則以為直徑的圓的圓心坐標(biāo)為,半徑

所以以為直徑的圓截軸所得弦長(zhǎng)為

綜上,以為直徑的圓截軸所得弦長(zhǎng)為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知直線l過(guò)點(diǎn)P2,2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρρcos2θ4cosθ0.

1)求C的直角坐標(biāo)方程;

2)若lC交于AB兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l、m,平面α、β,下列命題正確的是 (  )

A. lβ,lααβ

B. lβmβ,lαmααβ

C. lm,lα,mβαβ

D. lβ,mβ,lαmα,lmMαβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面為菱形,,的中點(diǎn).

1)證明:平面;

2)若,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時(shí)圓上一點(diǎn)P的位置在,圓在x軸上沿正向滾動(dòng).當(dāng)圓滾動(dòng)到圓心位于時(shí),的坐標(biāo)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過(guò)曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市收集并整理了該市20191月份至10月份各月最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了下面的折線圖.

已知該城市各月的最低氣溫與最高氣溫具有較好的線性關(guān)系,則根據(jù)折線圖,下列結(jié)論正確的是

A.最低氣溫與最高氣溫為正相關(guān)B.10月的最高氣溫不低于5月的最高氣溫

C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1D.最低氣溫低于0 的月份有4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C1(a>0,b>0)與橢圓1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1、F2分別為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列說(shuō)法是否正確,并說(shuō)明理由.

1)如果一件事成功的概率是0.1%,那么它必然不會(huì)成功;

2)某校九年級(jí)共有學(xué)生400人,為了了解他們的視力情況,隨機(jī)調(diào)查了20名學(xué)生的視力并對(duì)所得數(shù)據(jù)進(jìn)行整理,若視力在0.95~1.15范圍內(nèi)的頻率為0.3,則可估計(jì)該校九年級(jí)學(xué)生的視力在0.95~1.15范圍內(nèi)的人數(shù)為120;

3)甲袋中有12個(gè)黑球,4個(gè)白球,乙袋中有20個(gè)黑球,20個(gè)白球,分別從兩個(gè)袋子中摸出1個(gè)球,要想摸出1個(gè)黑球,由于乙袋中黑球的個(gè)數(shù)多些,故選擇乙袋成功的機(jī)會(huì)較大.

查看答案和解析>>

同步練習(xí)冊(cè)答案