【題目】某校從高一年級學(xué)生中隨機抽取60名學(xué)生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);
(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分數(shù)至少一人落在的概率.
【答案】(1)眾數(shù)為75,中位數(shù)為73.33;(2).
【解析】
(1)由頻率分布直方圖能求出a=0.030.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分數(shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分數(shù)至少一人落在[50,60)的概率.
(1)由頻率分布直方圖得:
,
解得,
所以眾數(shù)為:,
的頻率為,
的頻率為,
中位數(shù)為:.
(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,
的頻率為0.1,的頻率為0.15,
中抽到人,中抽取人,
從這五人中任選兩人參加補考,
基本事件總數(shù),
這兩人的分數(shù)至少一人落在包含的基本事件個數(shù),
所以這兩人的分數(shù)至少一人落在的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天第二天分別生產(chǎn)了1件2件次品,而質(zhì)檢部每天要在生產(chǎn)的10件產(chǎn)品中隨意抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當天的產(chǎn)品不能通過.
(1)求兩天全部通過檢查的概率;
(2)若廠內(nèi)對該車間生產(chǎn)的產(chǎn)品質(zhì)量采用獎懲制度,兩天全不通過檢查罰300元,通過1天,2天分別獎300元900元.那么該車間在這兩天內(nèi)得到獎金的數(shù)學(xué)期望是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若給定非零實數(shù),對于任意實數(shù),總存在非零常數(shù),使得恒成立,則稱函數(shù)是上的級類周期函數(shù),若函數(shù)是上的2級2類周期函數(shù),且當時,,又函數(shù).若,,使成立,則實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是拋物線:的焦點,動直線過點且與拋物線相交于,兩點.當直線變化時,的最小值為4.
(1)求拋物線的標準方程;
(2)過點,分別作拋物線的切線,,與相交于點,,與軸分別交于點,,求證:與的面積之比為定值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P、M、N分別是正方體的棱,AD,AB上非頂點的任意點.
①的外心必在的某一邊上;
②的外心必在的內(nèi)部;
③的垂心必是點A在平面PMN上的射影;
④若線段AP、AM、AN的長分別為a、b、c,則.其中( ).
A. 只有①、④正確.
B. 只有③、④正確.
C. 只有②、③、④正確.
D. 只有②、③正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)討論函數(shù)的單凋性;
(2)若存在使得對任意的不等式(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點,點在橢圓上,且軸,的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于,兩點,設(shè)為坐標原點,是否存在常數(shù),使得恒成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com