【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,b= sinB,且滿足tanA+tanC= . (Ⅰ)求角C和邊c的大小;
(Ⅱ)求△ABC面積的最大值.

【答案】解:(Ⅰ)tanA+tanC= 可得 + = = = = ,
∴cosC=
∵0<C<π,
∴C= ,
∵b= sinB,
由正弦定理可得 = =
∴c= ;
(Ⅱ)由余弦定理可得c2=a2+b2﹣2abcosC,
=a2+b2﹣ab≥2ab﹣ab=ab,當且僅當a=b時取等號.
∴SABC= absinC= ab≤ × = ,
故△ABC面積的最大值為
【解析】(Ⅰ)根據(jù)同角的三角函數(shù)的關系以及誘導公式和兩角和的正弦公式即可求出,再根據(jù)正弦定理即可求出c的值,(Ⅱ)根據(jù)余弦定理和基本不等式即可求出最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班從6名干部中(其中男生4人,女生2人)選3人參加學校的義務勞動.
(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)已知的兩個零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)當時,若函數(shù)沒有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 + =1(a>b>0)的左右焦點分別為F1 , F2 , 點D在橢圓上,DF1⊥F1F2 , =2 ,△DF1F2的面積為 . (Ⅰ)求該橢圓的標準方程;
(Ⅱ)是否存在圓心在y軸上的圓,使圓在x軸的上方與橢圓有兩個交點,且圓在這兩個交點處的兩條切線互相垂直并分別過不同的焦點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))在處取得極值.

(1)求的單調(diào)區(qū)間;

(2)討論的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于MN兩點,且

求圓C的標準方程;

過點的直線l與圓C交于不同的兩點D,E,若時,求直線l的方程;

已知Q是圓C上任意一點,問:在x軸上是否存在兩定點A,B,使得?若存在,求出A,B兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線為,也為函數(shù)的圖象的切線必須滿足

A. B. C. D.

查看答案和解析>>

同步練習冊答案