【題目】已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,],求函數(shù)f(x)的最值及相應(yīng)x的取值.
【答案】(1)[kπ﹣,kπ+],k∈Z;(2)見解析.
【解析】
試題(1)運用二倍角的正弦和余弦公式,及兩角和的正弦公式,化簡函數(shù)f(x),再由正弦函數(shù)的周期和單調(diào)增區(qū)間,解不等式即可得到.(2)由x的范圍,可得2x+ 的范圍,再由正弦函數(shù)的圖象和性質(zhì),即可得到最值.
試題解析:
(1)f(x)=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1 =sin2x+cos2x+2= sin(2x+ )+2,
令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,
則kπ﹣ ≤x≤kπ+ ,k∈Z,
則有函數(shù)的單調(diào)遞增區(qū)間為[kπ﹣,kπ+],k∈Z.
(2)當(dāng)x∈[0,]時,2x+ ∈[,],
則有sin(2x+)∈[﹣1,1],
則當(dāng)x=時,f(x)取得最小值,且為1,
當(dāng)x=時,f(x)取得最大值,且為+2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若對任意的恒成立,求實數(shù)的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)向量, ,其中為的兩個內(nèi)角.
(1)若,求證: 為直角;
(2)若,求證: 為銳角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論:
(1)若,則恒成立;
(2)命題“若,則”的逆否命題為“若,則”;
(3)“命題為真”是“命題為真”的充分不必要條件;
(4)命題“”的否定是“”.
其中正確的結(jié)論的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C和橢圓有公共的焦點,且離心率為.
(1)求雙曲線C的方程.
(2)經(jīng)過點M(2,1)作直線l交雙曲線C于A,B兩點,且M為AB的中點,求直線l的方程并求弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實數(shù)的取值范圍.
(Ⅱ)如果當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】富華中學(xué)的一個文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com