【題目】已知函數(shù)f(x)=ax﹣cosx,a≠0.
(1)若函數(shù)f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)若x∈[0,2π],求:當a≥時,函數(shù)f(x)僅有一個零點.
【答案】(1)或(2)詳見解析
【解析】
(1)首先求函數(shù)的導數(shù),,當函數(shù)單調(diào)遞增時恒成立,當函數(shù)單調(diào)遞減時,恒成立;(2)根據(jù)(1)可知當時,函數(shù)單調(diào)遞增,根據(jù)零點存在性定理可知只有一個交點,當時,可得函數(shù)存在兩個極值點,,根據(jù)單調(diào)性可判斷,是極大值,是極小值,因為,,若函數(shù)只有一個零點,只需滿足,即可求得的取值范圍.
(1)解:由,可得,.
因為,
所以當時,,為上的單調(diào)增函數(shù);
當時,,為上的單調(diào)減函數(shù).
綜上,若函數(shù)為單調(diào)函數(shù),則或.
(2)證明:當時,由(1)可知為上的單調(diào)增函數(shù).
又,
所以函數(shù)在有且僅有一個零點,滿足題意.
當時,
令,則.由于,所以,
從而必有,,使,且.
不妨設,且有,,
所以當時,,為增函數(shù);
當時,,為減函數(shù);
當時,,為增函數(shù).
從而函數(shù)的極大值為,極小值為.
因為,所以,從而極大值.
又,
要使函數(shù)僅有一個零點,則極小值,
所以,即.
又,,
所以當時,函數(shù)僅有一個零點.
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗“喜歡玩手機游戲與認為作業(yè)多”是否有關系,某班主任對班級的30名學生進行了調(diào)查,得到一個列聯(lián)表:
認為作業(yè)多 | 認為作業(yè)不多 | 合計 | |
喜歡玩手機游戲 | 18 | 2 | |
不喜歡玩手機游戲 | 6 | ||
合計 | 30 |
(1)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為“喜歡玩手機游戲”與“認為作業(yè)多”有關系?
(3)若從不喜歡玩手機游戲的人中隨機抽取3人,則至少2人認為作業(yè)不多的概率是多少?
參考公式及參考數(shù)據(jù):獨立性檢驗概率表
P() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
計算公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司結合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了A,B,C三種放假方案,調(diào)查結果如下:
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中優(yōu)秀的人數(shù)是30人.
(1)請完成上面的列聯(lián)表;
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
參考公式與臨界值表 .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學團委組織了“紀念抗日戰(zhàn)爭勝利73周年”的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,,…,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),對于任意,,總有且.若對于任意,存在,使成立,則實數(shù)的取值范圍是( )
A. B. 或
C. 或D. 或或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩個學校高三年級分別有1100人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)一模考試的數(shù)學成績情況,采用分層抽樣方法從兩個學校一共抽取了105名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:
(1)計算,的值;
(2)若規(guī)定考試成績在為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學成績的優(yōu)秀率;
(3)若規(guī)定考試成績在內(nèi)為優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,若按是否優(yōu)秀來判斷,是否有的把握認為兩個學校的數(shù)學成績有差異.
附:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com