如(1+2x)6的展開式中第二項(xiàng)大于它的相鄰兩項(xiàng),則x的取值范圍是
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:二項(xiàng)式定理
分析:由題意可得
C
1
6
•2x>
C
0
6
,且
C
1
6
•2x>
C
2
6
•(2x)2,由此求得x的范圍.
解答: 解:由題意可得
C
1
6
•2x>
C
0
6
,且
C
1
6
•2x>
C
2
6
•(2x)2,
解得
1
12
<x<
1
5
,
故答案為:(
1
12
1
5
).
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求和:9+11+13+15+…+189;
(2)在數(shù)列{an}中,a1=1且an=
an-1
1+an-1
(n≥2),求通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)定義域?yàn)椋?π,π),且函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,當(dāng)x∈(0,π)時(shí),f(x)=-f′(
π
2
)sinx-πl(wèi)nx,(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=f(30.3),b=f(logπ3),c=f(log3
1
9
),則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1和雙曲線C2
y2
a2
-
x2
b2
=1,其中b>a>0,且雙曲線C1與C2的交點(diǎn)在兩坐標(biāo)軸上的射影恰好是兩雙曲線的焦點(diǎn),則雙曲線C1的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,∠C=120°,a,b是方程x2-3x+2=0的兩根,則c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
1
5
x5+3x2+4x在x=-1處的切線的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x+1)=x2-2x+1的定義域?yàn)閇-2,0],則函數(shù)y=f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)為雙曲線
x2
a2
-
y2
b2
=1(b>a>0)的右焦點(diǎn),過(guò)F作直線l與圓x2+y2=b2切于點(diǎn)M,與雙曲線交于點(diǎn)P,且M恰為線段PF的中點(diǎn),則雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z=-4+3i,則2-
.
z
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案