【題目】

已知點(diǎn)A(2,0)B(2,0),動(dòng)點(diǎn)M(x,y)滿(mǎn)足直線(xiàn)AMBM的斜率之積為.M的軌跡為曲線(xiàn)C.

1)求C的方程,并說(shuō)明C是什么曲線(xiàn);

2)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交CPQ兩點(diǎn),點(diǎn)P在第一象限,PEx軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.

i)證明:是直角三角形;

ii)求面積的最大值.

(二)選考題:共10請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

1)分別求出直線(xiàn)AMBM的斜率,由已知直線(xiàn)AMBM的斜率之積為,可以得到等式,化簡(jiǎn)可以求出曲線(xiàn)C的方程,注意直線(xiàn)AMBM有斜率的條件;

2)(i)設(shè)出直線(xiàn)的方程,與橢圓方程聯(lián)立,求出P,Q兩點(diǎn)的坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),求出直線(xiàn)的方程,與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出的坐標(biāo),再求出直線(xiàn)的斜率,計(jì)算的值,就可以證明出是直角三角形;

ii)由(i)可知三點(diǎn)坐標(biāo),是直角三角形,求出的長(zhǎng),利用面積公式求出的面積,利用導(dǎo)數(shù)求出面積的最大值.

1)直線(xiàn)的斜率為,直線(xiàn)的斜率為,由題意可知:,所以曲線(xiàn)C是以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,不包括左右兩頂點(diǎn)的橢圓,其方程為;

2)(i)設(shè)直線(xiàn)的方程為,由題意可知,直線(xiàn)的方程與橢圓方程聯(lián)立,,點(diǎn)P在第一象限,所以,因此點(diǎn)的坐標(biāo)為

直線(xiàn)的斜率為,可得直線(xiàn)方程:,與橢圓方程聯(lián)立,,消去得,*),設(shè)點(diǎn),顯然點(diǎn)的橫坐標(biāo)是方程(*)的解

所以有,代入直線(xiàn)方程中,得

,所以點(diǎn)的坐標(biāo)為,

直線(xiàn)的斜率為; ,

因?yàn)?/span>所以,因此是直角三角形;

ii)由(i)可知:,

的坐標(biāo)為

,

,

,因?yàn)?/span>,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,因此當(dāng)時(shí),函數(shù)有最大值,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,該橢圓經(jīng)過(guò)點(diǎn),且離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是圓上任意一點(diǎn),由引橢圓的兩條切線(xiàn),,當(dāng)兩條切線(xiàn)的斜率都存在時(shí),證明:兩條切線(xiàn)斜率的積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班進(jìn)行了次數(shù)學(xué)測(cè)試,其中甲、乙兩人的成績(jī)統(tǒng)計(jì)情況如莖葉圖所示:

(I)該班數(shù)學(xué)老師決定從甲、乙兩人中選派一人去參加數(shù)學(xué)比賽,你認(rèn)為誰(shuí)去更合適?并說(shuō)明理由;

(II)從甲的成績(jī)中人去兩次作進(jìn)一步的分析,在抽取的兩次成績(jī)中,求至少有一次成績(jī)?cè)?/span>之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,過(guò)的截面與面交于

1)求證:

2)若截面過(guò)點(diǎn),求證:

3)在(2)的條件下,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為2的等邊三角形且垂直于底, 的中點(diǎn)。

1)證明:直線(xiàn)平面;

2)點(diǎn)在棱上,且直線(xiàn)與底面所成角為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,,的中點(diǎn),.

(1)求證:平面;

(2)若,點(diǎn)在側(cè)棱上,且,二面角的大小為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,新苗中學(xué)數(shù)學(xué)教師對(duì)新入學(xué)的名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于小時(shí)的有人,余下的人中,在高三模擬考試中數(shù)學(xué)成績(jī)不足分的占,統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表:

分?jǐn)?shù)大于等于

分?jǐn)?shù)不足

合計(jì)

周做題時(shí)間不少于小時(shí)

4

19

周做題時(shí)間不足小時(shí)

合計(jì)

45

)請(qǐng)完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”.

)(i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于分和分?jǐn)?shù)不足分的兩組學(xué)生中抽取名學(xué)生,設(shè)抽到的不足分且周做題時(shí)間不足小時(shí)的人數(shù)為,求的分布列(概率用組合數(shù)算式表示).

(ii)若將頻率視為概率,從全校大于等于分的學(xué)生中隨機(jī)抽取人,求這些人中周做題時(shí)間不少于小時(shí)的人數(shù)的期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在等腰梯形ABCD中,,E,FAB的三等分點(diǎn),且分別沿DE、CF折起到AB兩點(diǎn)重合,記為點(diǎn)P

證明:平面平面PEF

,求PD與平面PFC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案