【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.

【答案】解:(Ⅰ)直線l的參數(shù)方程為 (t為參數(shù)),(答案不唯一,可酌情給分) 圓的極坐標(biāo)方程為ρ=6sinθ.
(Ⅱ)把 代入x2+(y﹣3)2=9,得 ,
設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為t1 , t2 ,
∴t1t2=﹣7,則|PA|=|t1|,|PB|=|t2|,∴|PA||PB|=7.
【解析】(I)根據(jù)題意直接求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.(II)把 代入x2+(y﹣3)2=9,利用參數(shù)的幾何意義,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]ex在區(qū)間(2,4)上存在極大值點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點(diǎn),線段于點(diǎn).

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) .
(1)求函數(shù) 的最小正周期;
(2)在 中, 分別為內(nèi)角 的對(duì)邊,且 ,求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標(biāo)系的原點(diǎn)O的為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標(biāo)方程;
(2)設(shè)直線C和曲線P的交點(diǎn)為A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)兩個(gè)變量x , y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2y2),…(xn , yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 必過樣本點(diǎn)的中心
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn) ,焦點(diǎn)在 軸上的橢圓,離心率 ,且橢圓過點(diǎn) .
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點(diǎn)分別為 ,過 的直線 與橢圓交于不同的兩點(diǎn) ,則 的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動(dòng)一個(gè)金屬片;
(2)在每次移動(dòng)過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個(gè)金屬片從1號(hào)針移到3號(hào)針最少需要移動(dòng)的次數(shù)記為f(n);
①f(3)=
②f(n)=

查看答案和解析>>

同步練習(xí)冊答案