【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在區(qū)間(2,4)上存在極大值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(1)求函數(shù) 的最小正周期;
(2)在 中, 分別為內(nèi)角 的對(duì)邊,且 , ,求 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標(biāo)系的原點(diǎn)O的為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標(biāo)方程;
(2)設(shè)直線C和曲線P的交點(diǎn)為A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)兩個(gè)變量x , y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…(xn , yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 必過樣本點(diǎn)的中心
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn) ,焦點(diǎn)在 軸上的橢圓,離心率 ,且橢圓過點(diǎn) .
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點(diǎn)分別為 ,過 的直線 與橢圓交于不同的兩點(diǎn) ,則 的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動(dòng)一個(gè)金屬片;
(2)在每次移動(dòng)過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個(gè)金屬片從1號(hào)針移到3號(hào)針最少需要移動(dòng)的次數(shù)記為f(n);
①f(3)=;
②f(n)= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com