【題目】如圖程序框圖輸出的結(jié)果為(
A.52
B.55
C.63
D.65

【答案】A
【解析】解:模擬程序的運行,可得:

s=0,i=3

執(zhí)行循環(huán)體,s=3,i=4

不滿足條件i>10,執(zhí)行循環(huán)體,s=7,i=5

不滿足條件i>10,執(zhí)行循環(huán)體,s=12,i=6

不滿足條件i>10,執(zhí)行循環(huán)體,s=18,i=7

不滿足條件i>10,執(zhí)行循環(huán)體,s=25,i=8

不滿足條件i>10,執(zhí)行循環(huán)體,s=33,i=9

不滿足條件i>10,執(zhí)行循環(huán)體,s=42,i=10

不滿足條件i>10,執(zhí)行循環(huán)體,s=52,i=11

滿足條件i>10,退出循環(huán),輸出s的值為52.

故選:A.

【考點精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點EPD的中點.

(Ⅰ)求證:PA⊥平面ABCD;

(Ⅱ)求二面角E—AC—D的大;

(Ⅲ)求點P到平面EAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算:電費每月用電不超過100度時,按每度0.57元計算;每月用電量超過100度時,其中的100度仍按原標(biāo)準(zhǔn)收費,超過的部分每度按0.5元計算.

(Ⅰ)設(shè)月用電度時,應(yīng)交電費元,寫出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費情況如下:

月份

一月

二月

三月

合計

交費金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中, a、b、c分別為角A、B、C的對邊,且

(1)若,試判斷△ABC的形狀;

(2)若a=,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點.
(1)證明:PF⊥FD;
(2)若PA=1,求點E到平面PFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處都取得極值.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)7家超市的廣告費支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,

超市

A

B

C

D

E

F

G

廣告費支出x

1

2

4

6

11

13

19

銷售額y

19

32

40

44

52

53

54


(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適.并用此模型預(yù)測A超市廣告費支出為3萬元時的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = , = x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項為正的數(shù)列{an}中,數(shù)列的前n項和Sn滿足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)當(dāng),若關(guān)于的方程有且只有兩個不同的實根,求實數(shù)的取值范圍;

(Ⅱ)對任意不等式恒成立,的值.

查看答案和解析>>

同步練習(xí)冊答案