【題目】已知點(diǎn)F為拋物線C:y2=4x的焦點(diǎn),點(diǎn)P是準(zhǔn)線l上的動點(diǎn),直線PF交拋物線于A,B兩點(diǎn),若點(diǎn)P的縱坐標(biāo)是m(m≠0),點(diǎn)D為準(zhǔn)線l與x軸的交點(diǎn).
(1)若m=2,求△DAB的面積;
(2)設(shè)=λ=μ,求證:λ+μ為定值.
【答案】(1);(2)見解析
【解析】
⑴代入,求出直線的斜率,聯(lián)立直線方程與拋物線方程求出的長度,然后求出高,就可以得到面積
⑵==,變化為坐標(biāo)表示式,從中求出參數(shù)、,用兩點(diǎn)A,B的坐標(biāo)表示的表達(dá)式,即可得證
(1)解由題知點(diǎn)P,F的坐標(biāo)分別為(-1,2),(1,0),于是直線PF的斜率為1,
所以直線PF的方程為y=-(x-1).
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
由直線與拋物線聯(lián)立得x2-6x+1=0,
所以x1+x2=6,x1x2=1,
于是|AB|=x1+x2+2=8.
點(diǎn)D到直線x+y-1=0的距離d=,
所以S=×8×=4.
(2)證明由直線y=-(x-1),與拋物線聯(lián)立得m2x2-(2m2+16)x+m2=0,
所以x1+x2=,x1x2=1.
因?yàn)?/span>=λ=μ,
所以(1-x1,-y1)=λ(x2-1,y2),(-1-x1,m-y1)=μ(x2+1,y2-m),
于是λ=,μ=(x2≠±1).
所以λ+μ=
==0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)求的值并估計(jì)全校3000名學(xué)生中讀書謎大概有多少?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
附:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在(0, )上處處可導(dǎo),若[f(x)﹣f′(x)]tanx﹣f(x)<0,則( )
A.一定小于
B.一定大于
C.可能大于
D.可能等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某項(xiàng)娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.
(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,求a的值及估計(jì)這200名參賽選手的成績平均數(shù);
(2)根據(jù)已有的經(jīng)驗(yàn),參加復(fù)活賽的選手能夠進(jìn)入第二輪比賽的概率為,假設(shè)每名選手能否通過復(fù)活賽相互獨(dú)立,現(xiàn)有3名選手進(jìn)入復(fù)活賽,記這3名選手在復(fù)活賽中通過的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C與橢圓E: 共焦點(diǎn),并且經(jīng)過點(diǎn) ,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在橢圓C上任取兩點(diǎn)P、Q,設(shè)PQ所在直線與x軸交于點(diǎn)M(m,0),點(diǎn)P1為點(diǎn)P關(guān)于軸x的對稱點(diǎn),QP1所在直線與x軸交于點(diǎn)N(n,0),探求mn是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動圓經(jīng)過點(diǎn)M(a﹣2,0),N(a+2,0),P(0,﹣2),其中a∈R.
(1)求動圓圓心的軌跡E的方程;
(2)過點(diǎn)P作直線l交軌跡E于不同的兩點(diǎn)A、B,直線OA與直線OB分別交直線y=2于兩點(diǎn)C、D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com