【題目】甲、乙兩隊進行一場排球比賽,根據(jù)以往經(jīng)驗,單局比賽甲隊勝乙隊的概率為.本場比賽采用五局三勝制,即先勝三局的隊獲勝,比賽結(jié)束.設(shè)各局比賽相互間沒有影響且無平局.求:
(1)前三局比賽甲隊領(lǐng)先的概率;
(2)設(shè)本場比賽的局?jǐn)?shù)為,求的概率分布和數(shù)學(xué)期望. (用分?jǐn)?shù)表示)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,若,.
(1)證明:當(dāng)時,;
(2)求數(shù)列的通項公式;
(3)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績的情況,該州教育局組織高三理科生進行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機抽取了100名理科生,,將他們的化學(xué)成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機抽取一名學(xué)生,該學(xué)生的化學(xué)成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取10名,再從這10名學(xué)生中隨機抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.
(1)求拋物線的方程;
(2)已知點的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.
(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;
(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BP與y軸相交于M,N點.判斷點M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,設(shè)的兩個極值點,()恰為的零點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com