如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-D的正切值.
考點(diǎn):二面角的平面角及求法,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離,空間角
分析:(1)因?yàn)椤螪AB=60°,AB=2AD,由余弦定理得BD=
3
AD=
3
,由此能證明PA⊥BD.
(2)作AM垂直于PB于M點(diǎn),連DM,則AD⊥平面PBD從而∠AMD為二面角A-PB-D的平面角,由此能求出其正切值.
解答: (1)證明:因?yàn)椤螪AB=60°,AB=2AD,
由余弦定理得BD=
3
AD=
3
,…(2分)
從而BD2+AD2=AB2,故BD⊥AD,…(3分)
∵PD⊥面ABCD,BD?面ABCD,∴PD⊥BD…(4分)
又AD∩PD=D,
所以BD⊥平面PAD…(5分)
故PA⊥BD.…(6分)
(2)解:作AM垂直于PB于M點(diǎn),連DM,
由已知得AD⊥平面PBD
所以AD⊥BD,又AM⊥BD
BD⊥平面ADM所以BD⊥DM
所以∠AMD為二面角A-PB-D的平面角,
AD=1,DM=
3
2
,
tan∠AMD=
AD
DM
=
2
3
3
點(diǎn)評:本題考查異面直線垂直的證明,考查二面角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2,則不等式f(1-2x)<f(3)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體PABC中,PA=PB=PC=AB,如果PA與平面ABC所成的角等于60°,則PC與平面PAB所成的角的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
3
x3-3x+9,求函數(shù)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線l,切點(diǎn)為T,且l交雙曲線的右支于點(diǎn)P,若點(diǎn)M是線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OM|-|TM|=(  )
A、
b-a
2
B、b-a
C、
a+b
2
D、a+
b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

測量河對岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)側(cè)點(diǎn)C與D.現(xiàn)測得∠BCD=75°,∠BDC=60°,CD=100m.并在點(diǎn)C測得塔頂A的仰角∠ACB=60°,求:塔高AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x-1|-lnx.
(1)求曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間及f(x)的最小值;
(3)根據(jù)(2)的結(jié)論推出當(dāng)x>1時(shí):
lnx
x
與1-
1
x
的大小關(guān)系,并由此比較
ln22
22
+
ln32
32
+…+
lnn2
n2
(n-1)(2n+1)
2(n+1)
(n∈N*且n≥2)
的大小,且證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log2a-1(a2-2a+1)的值為正數(shù),則a的取值范圍是( 。
A、(0,2)
B、(0,
1
2
)∪(1,2)
C、(-∞,0)∪(2,+∞)
D、(
1
2
,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時(shí),函數(shù)解析式為f(x)=
1
4x
-
b
2x
(b∈R)
(Ⅰ)求b的值,并求出f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

同步練習(xí)冊答案