【題目】在六條棱長分別為2、3、3、4、5、5的所有四面體中,最大的體積是多少?證明你的結(jié)論.
【答案】;證明見解析
【解析】
根據(jù)三角形兩邊之差小于第三邊這個性質(zhì),按題設(shè)數(shù)據(jù),所有一邊是2的三角形其余兩邊只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,從而題設(shè)四面體中,以棱長為2的棱為公共邊的兩個面的其余兩邊只可能是下列三種情形:(I)(A)與(B),(II)(A)與(C);(III)(B)與(C),于是問題轉(zhuǎn)化為對棱長分別為(I)(II)(III)的四面體來計算體積的最大值(或估計).
由三角形兩邊之差小于第三邊這個性質(zhì),按題設(shè)數(shù)據(jù),所有一邊是2的三角形其余兩邊只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,從而題設(shè)四面體中,以棱長為2為公共邊的兩個面的其余兩邊只可能是下列三種情形:(I)(A)與(B),(II)(A)與(C);(III)(B)與(C).
對情形(I)(A)與(B),四邊形沿AB折疊后使,則由得,即是四面體以為底面的高,
∴體積為;
對情形(II)(A)與(C)四邊形沿AB折疊后使,有兩種情形,它們體積相等,記為,∵,∴為鈍角,與平面斜交,
∴;
對情形(III),(B)與(C),這樣的四面體也有兩個,體積也相等,記為,
.
∴最大體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)>0,對任意x,y∈R都有f(x+y)=f(x) f(y)成立,且當(dāng)x>0時,f(x)>1.
(1)求f(0)的值;
(2)求證f(x)在R上是增函數(shù);
(3)若f(k3x)f(3x﹣9x﹣2)<1對任意x∈R恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為 (為參數(shù),),以為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)平面內(nèi),每個點繞原點按逆時針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,每個點橫、縱坐標(biāo)分別變?yōu)樵瓉淼?/span>倍的變換所對應(yīng)的矩陣為.
(I)求矩陣的逆矩陣;
(Ⅱ)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面,分別是的中點,,.
(1)求二面角的余弦值;
(2)點是線段上的動點,當(dāng)直線與所成的角最小時,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一款擊鼓小游戲規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得50分,沒有出現(xiàn)音樂則扣除150分(即獲得-150分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(Ⅰ)玩一盤游戲,至少出現(xiàn)一次音樂的概率是多少?
(Ⅱ)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(Ⅲ)許多玩過這款游戲的人都發(fā)現(xiàn),玩的盤數(shù)越多,分?jǐn)?shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析其中的道理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.若事件與事件是互斥事件,則
B.若事件與事件滿足條件:,則事件A與事件是對立事件
C.一個人打靶時連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“至多有一次中靶”是對立事件
D.把紅、橙、黃3張紙牌隨機分給甲、乙、丙3人,每人分得1張,則事件“甲分得紅牌”與事件“乙分得紅牌”是互斥事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com