△ABC中,sinA:sinB:sinC=4:5:6,則cosA:cosB:cosC的值為( 。
A、4:5:16
B、16:25:36
C、12:9:2
D、不能確定
考點(diǎn):正弦定理
專題:解三角形
分析:已知比例式利用正弦定理化簡求出三邊之和,利用余弦定理求出cosA,cosB,cosC的值,即可求出所求比值.
解答: 解:∵△ABC中,sinA:sinB:sinC=4:5:6,
∴由正弦定理化簡得:a:b:c=4:5:6,
設(shè)a=4k,b=5k,c=6k,
由余弦定理得:cosA=
b2+c2-a2
2bc
=
25k2+36k2-16k2
60k2
=
3
4
;cosB=
a2+c2-b2
2ac
=
16k2+36k2-25k2
48k2
=
9
16
;cosC=
a2+b2-c2
2ab
=
16k2+25k2-36k2
40k2
=
1
8
,
則cosA:cosB:cosC=
3
4
9
16
1
8
=12:9:2.
故選:C.
點(diǎn)評:此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)極限
lim
x→x0
ln
x
-ln
x0
x-x0
的值為( 。
A、
2
x0
B、
1
2x0
C、
x0
2
D、
1
2
x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

獵人射擊距離100米遠(yuǎn)處的目標(biāo),命中的概率為0.6.
(1)如果獵人射擊距離100米遠(yuǎn)處的靜止目標(biāo)3次,求至少有一次命中的概率;
(2)如果獵人射擊距離100米遠(yuǎn)處的動物,假如第一次未命中,則進(jìn)行第二次射擊,但由于槍聲驚動動物使動物逃跑從而使第二次射擊時動物離獵人的距離變?yōu)?50米,假如第二次仍未命中,則必須進(jìn)行第三次射擊,而第三次射擊時動物離獵人的距離為200米.假如擊中的概率與距離成反比,.求獵人最多射擊三次命中動物的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-x+2的零點(diǎn)個數(shù)為( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(1,-2)在直線xcosθ-
2
y-4=0的( 。
A、上方B、下方
C、線上D、位置視θ而定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
(1)若x2-5x+6=0,則x=2或x=3;
(2)若2≤x<3,則(x-2)(x-3)≤0;
(3)若a=b=0,則|a|+|b|=0;
(4)若x,y∈N,x+y是奇數(shù),則x,y中一個是奇數(shù),一個是偶數(shù).
那么 ( 。
A、(4)的逆命題假
B、(1)的逆命題真
C、(2)的否命題真
D、(3)的否命題假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x<
3
2
,求y=2x+
4
2x-3
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“cosA=2sinBsinC”是“△ABC為鈍角三角形”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題:
(1)y=sin4x-cos4x的最小正周期是π;
(2)終邊在y軸上的角的集合是{x|x=
2
,k∈Z};
(3)在同一坐標(biāo)系中,y=sinx的圖象和y=x的圖象有三個公共點(diǎn);
(4)y=sin(x-
π
2
)在[0,π]上是減函數(shù);
(5)把y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.
其中真命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案