【題目】如圖,拋物線的焦點為F(1,0),E是拋物線的準(zhǔn)線與x軸的交點,直線AB經(jīng)過焦點F且與拋物線交于A,B兩點,直線AE,BE分別交y軸于M,N兩點,記,的面積分別為.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)是否為定值?若是,求出該定值;若不是,請說明理由;
(3)求的最小值.
【答案】(1);(2)是定值,4;(3)5.
【解析】
(1)由焦點坐標(biāo)得焦參數(shù)后可得拋物線方程;
(2)由于直線AB的斜率不可能為0,故可設(shè),代入拋物線方程整理后得一元二次方程,設(shè),,則,.由計算和,并計算可得定值;
(3)在(2)基礎(chǔ)上,由點坐標(biāo)求出點坐標(biāo),同理得坐標(biāo),得(仍然代入),這樣可用表示,換元設(shè)(),利用函數(shù)的單調(diào)性可得最小值.
解:(1)∵拋物線的焦點為,∴,
∴拋物線方程為;
(2)由已知可得,,
由于直線AB的斜率不可能為0,故可設(shè),
聯(lián)立,消去x并整理得:,
設(shè),,則,.
所以,,
而,
所以(定值);
(3)直線,可得,同理,
∴,
即,
∴,
令則,
由對勾函數(shù)的性質(zhì)知在上是增函數(shù),在上是增函數(shù),所以時,,此時.
故的最小值是5,此時直線軸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:經(jīng)過點,且離心率.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右頂點為A,若直線與橢圓E相交于MN兩點(異于A點),且滿足,試證明直線l經(jīng)過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且,拋物線的通徑與橢圓的右通徑在同一直線上.
(1)求橢圓與拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線焦點且傾斜角為的直線與橢圓交于、兩點,為橢圓的左焦點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央、國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為“絕對貧困戶”,否則認(rèn)定該戶為“相對貧困戶”;當(dāng)時,認(rèn)定該戶為“亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對貧困戶數(shù)與受教育水平不好有關(guān):
受教育水平良好 | 受教育水平不好 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)上級部門為了調(diào)查這個村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學(xué)期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a,bR.
(1)若a=1,求關(guān)于x的不等式的解集;
(2)若,討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.
(1)將y表示成θ的函數(shù),并寫出θ的范圍;
(2)請確定工作坑P的位置,使地下電纜管線的總長度最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 ,直線與拋物線相交于兩點,且當(dāng)傾斜角為的直線經(jīng)過拋物線的焦點時,有.
(1)求拋物線的方程;
(2)已知圓,是否存在傾斜角不為的直線,使得線段被圓截成三等分?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15∽65歲的人群中隨機調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
45歲以下 | 45歲以上 | 總計 | |
支持 | |||
不支持 | |||
總計 |
(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為我國數(shù)學(xué)家趙爽約3世紀(jì)初在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com