【題目】在如圖所示的四棱錐 中,四邊形ABCD為正方形, 平面PAB,且 分別為 的中點, .
證明:
(1) 平 ;
(2)若 ,求二面角 的余弦值.
【答案】
(1)解: 證明: 連結(jié)BD,分別的交 于點 ,連結(jié)
為BD中點, E為PD中點, .又 為ED中點,
又 為OD的中點,
平面 平面 平面FMN.
(2)解: 平面 ,又 平面 .
如圖,以A為坐標(biāo)原點, 所在直線分別為x軸、y軸、z軸軸建立空間直角坐標(biāo)系,
則 ,則
平面ABCD,
平面ABC的一個法向量 ,設(shè)平面AEC的法向量為 ,
則 ,即 ,
令x=1,則 ,
由圖可知,二面角 為飩角, 二面角 的余弦值
【解析】(1)結(jié)合題意作出輔助線,由題中的長度關(guān)系可得證BP∥FG,由線面平行的判定定理即可證出P B ∥ 平面FMN.(2)根據(jù)題意建立空間直角坐標(biāo)系,求出各個點的坐標(biāo)進而求出各個向量的坐標(biāo),設(shè)出平面ABCD和平面EAC的法向量,由向量垂直的坐標(biāo)運算公式可求出法向量,再利用向量的數(shù)量積運算公式求出余弦值即可。
【考點精析】本題主要考查了直線與平面平行的判定的相關(guān)知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,則a25﹣a1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求該函數(shù)的最小正周期;
(2)求該函數(shù)的單調(diào)遞減區(qū)間;
(3)用“五點法”作出該函數(shù)在長度為一個周期的閉區(qū)間上的簡圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C1: =1和C2:x2+ =1.P為C1上的動點,Q為C2上的動點,w是 的最大值.記Ω={(P,Q)|P在C1上,Q在C2上,且 =w},則Ω中元素個數(shù)為( )
A.2個
B.4個
C.8個
D.無窮個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)預(yù)測,某地第n(n∈N*)個月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個月底的共享單車的保有量是前n個月的累計投放量與累計損失量的差.
(1)求該地區(qū)第4個月底的共享單車的保有量;
(2)已知該地共享單車停放點第n個月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達到最大,問該保有量是否超出了此時停放點的單車容納量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本的平均數(shù)是,方差是,則對樣本,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】巳知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,都有不等式f(x)+xf'(x)>0成立,若 ,則a,b,c的大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A為橢圓 =1(a>b>0)上的一個動點,弦AB,AC分別過左右焦點F1 , F2 , 且當(dāng)線段AF1的中點在y軸上時,cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ1+λ2是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com