【題目】巳知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf'(x)>0成立,若 ,則a,b,c的大小關(guān)系是

【答案】c>a>b
【解析】解:根據(jù)題意,令g(x)=xf(x),則a=g(40.2),b=g(log43),c=f(log4

有g(shù)(﹣x)=(﹣x)f(﹣x)=(﹣x)[﹣f(x)]=xf(x),則g(x)為偶函數(shù),

又由g′(x)=(x)′f(x)+xf'(x)=f(x)+xf'(x),

又由當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf'(x)>0成立,

則當(dāng)x∈(0,+∞)時(shí),有g(shù)′(x)>0,即g(x)在(0,+∞)上為增函數(shù),

分析可得|log4 |>|40.2|>|log43|,

則有c>a>b;

所以答案是:c>a>b.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇,以及對(duì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的理解,了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2pxp>0)上的點(diǎn)A(4,t)到其焦點(diǎn)F的距離為5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)過點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線1的距離為2,求直線1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐 中,四邊形ABCD為正方形, 平面PAB,且 分別為 的中點(diǎn), .

證明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .
(1)求函數(shù) 上的單調(diào)遞增區(qū)間;
(2)設(shè) 的三個(gè)角 所對(duì)的邊分別為 ,且 成公差大于零的等差數(shù)列,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數(shù)g(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2 ,e2+ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場(chǎng)決定從2種服裝、3種家電、4種日用品中,選出3種商品進(jìn)行促銷活動(dòng).
(1)試求選出3種商品中至少有一種是家電的概率;
(2)商場(chǎng)對(duì)選出的某商品采用抽獎(jiǎng)方式進(jìn)行促銷,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高60元,規(guī)定購(gòu)買該商品的顧客有3次抽獎(jiǎng)的機(jī)會(huì):若中一次獎(jiǎng),則獲得數(shù)額為n元的獎(jiǎng)金;若中兩次獎(jiǎng),則獲得數(shù)額為3n元的獎(jiǎng)金;若中三次獎(jiǎng),則共獲得數(shù)額為 6n元的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)中獎(jiǎng)的概率都是 ,請(qǐng)問:商場(chǎng)將獎(jiǎng)金數(shù)額n最高定為多少元,才能使促銷方案對(duì)商場(chǎng)有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式|2x﹣3|<x與不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班抽取20名學(xué)生周測(cè)物理考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率分布直方圖中a的值,并寫出眾數(shù);

(2)分別求出成績(jī)落在[50,60)[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)?/span>[50,70)的學(xué)生中任選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案