已知曲線C:y=x2+x
(1)求在x=1處的切線方程;
(2)求過(guò)點(diǎn)P(1,1)的切線的方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)欲求在點(diǎn)(1,1)處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決;
(2)設(shè)切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:(1)∵y=x2+x,
∴y′=2x+1,當(dāng)x=1時(shí),y'=3得切線的斜率為3,
∴曲線在點(diǎn)(1,2)處的切線方程為:y-2=3(x-1),即3x-y-1=0.
(2)設(shè)切點(diǎn)坐標(biāo)為(a,b),
則f′(a)=2a+1,f(a)=a2+a=b,
則對(duì)應(yīng)的切線方程為y-(a2+a)=(2a+1)(x-a),
∵切線過(guò)點(diǎn)P(1,1),
∴1-(a2+a)=(2a+1)(1-a),
∴a2-2a=0,解得a=0或a=2,
當(dāng)a=0時(shí),切線方程為y=x,
當(dāng)a=2時(shí),切線方程為y=5x-4,
故過(guò)點(diǎn)P(1,1)且與曲線C相切的切線l的方程為y=x或y=5x-4.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)條件求出對(duì)應(yīng)的切線斜率和切點(diǎn)坐標(biāo)是解決本題的關(guān)鍵,注意過(guò)點(diǎn)的切線和在點(diǎn)的切線之間的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A、y=lg|x|
B、y=x 
1
2
C、y=-2x
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a是實(shí)數(shù),且
a
1+i
+
1-i
2
是實(shí)數(shù),則a=( 。
A、
1
2
B、-1
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x2<1是-1<x<1的什么條件( 。
A、充分必要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分與不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下表是月份x與y用電量(單位:萬(wàn)度)之間的一組數(shù)據(jù):
x23456
y34689
(1)畫出散點(diǎn)圖;
(2)如果y對(duì)x有線性相關(guān)關(guān)系,求回歸方程;
(3)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);
(4)預(yù)測(cè)12月份的用電量.附:線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
,其中
.
x
,
.
y
為樣本平均值,線性回歸方程也可寫為
y
=
b
x+
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正項(xiàng)數(shù)列{an}滿足:an2-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=an•3n,求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的圓錐曲線標(biāo)準(zhǔn)方程:
(1)過(guò)點(diǎn)(-3,2)且與
x2
9
+
y2
4
=1有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)以原點(diǎn)為頂點(diǎn),坐標(biāo)軸為對(duì)稱軸,并且經(jīng)過(guò)點(diǎn)P(-4,-4
2
)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

仔細(xì)觀察下面的不等式,尋找規(guī)律,合理猜想出第n個(gè)不等式,并用數(shù)學(xué)歸納法證明你的猜想.
(1+
1
1
)>
3
,(1+
1
1
)(1+
1
3
)>
5
,(1+
1
1
)(1+
1
3
)(1+
1
5
)>
7
,(1+
1
1
)(1+
1
3
)(1+
1
5
)(1+
1
7
)>
9
,(1+
1
1
)(1+
1
3
)(1+
1
5
)(1+
1
7
)(1+
1
9
)>
11
.…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinx+siny=
2
3
,求
2
3
+siny-cos2x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案