【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大;
(2)若 ,求a+c的最大值.
【答案】
(1)解:由已知及正弦定理,得2sinC﹣sinA=2sinBcosA.
∵C=180°﹣A﹣B,
∴2sin(A+B)﹣sinA=2sinBcosA.
化簡(jiǎn),得sinA(2cosB﹣1)=0.
∵sinA≠0,
∴ .
∵0<B<π,
∴ .
(2)由已知及正弦定理,得 .
即a=4sinA,c=4sinC.
從而a+c=4sinA+4sinC,
∵ ,
∴ ,
化簡(jiǎn)得: ,
∵ ,
可得 ,
于是 ,
當(dāng) 時(shí),
故得a+c的最大值為: .
【解析】(1)根據(jù)正弦定理進(jìn)行邊角互化,再結(jié)合三角恒等變化可求出B的值,(2)根據(jù)正弦定理進(jìn)行邊角互化,用角表示出表,進(jìn)行三角恒等變換,由正弦函數(shù)的圖象和性質(zhì)可求出a+c的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市郊區(qū)有一加油站,2018年初汽油的存儲(chǔ)量為50噸,計(jì)劃從年初起每周初均購(gòu)進(jìn)汽油噸,以滿足城區(qū)內(nèi)和城外汽車用油需求,已知城外汽車用油每周5噸;城區(qū)內(nèi)汽車用油前個(gè)周需求量噸與的函數(shù)關(guān)系式為 , 為常數(shù),且前4個(gè)周城區(qū)內(nèi)汽車的汽油需求量為100噸.
(1)試寫出第個(gè)周結(jié)束時(shí),汽油存儲(chǔ)量(噸)與的函數(shù)關(guān)系式;
(2)要使16個(gè)周內(nèi)每周按計(jì)劃購(gòu)進(jìn)汽油之后,加油站總能滿足城區(qū)內(nèi)和城外的需求,且每周結(jié)束時(shí)加油站的汽油存儲(chǔ)量不超過150噸,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且 =λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓 的長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線 的焦點(diǎn),且橢圓 的離心率是 .
(1)求橢圓 的方程;
(2)過點(diǎn) 的動(dòng)直線與橢圓 相交于 兩點(diǎn).若線段 的中點(diǎn)的橫坐標(biāo)是 ,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,橢圓 過點(diǎn) ,直線 交 軸于 ,且 , 為坐標(biāo)原點(diǎn).
(1)求橢圓 的方程;
(2)設(shè) 是橢圓 的上頂點(diǎn),過點(diǎn) 分別作直線 交橢圓 于 兩點(diǎn),設(shè)這兩條直線的斜率分別為 ,且 ,證明:直線 過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹綠化活動(dòng)中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計(jì)學(xué)意義.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com