【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F為60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.
(1)求證:BF∥平面ADE;
(2)在線段CF上求一點(diǎn)G,使銳二面角B-EG-D的余弦值為.
【答案】(1)詳見(jiàn)解析;(2)點(diǎn)滿足.
【解析】
(1)先證明平面,平面,可得平面平面,從而可得結(jié)果;(2)作于點(diǎn),則平面,以平行于的直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,設(shè),利用向量垂直數(shù)量積為零列方程組求得平面的法向量,結(jié)合面的一個(gè)法向量為,利用空間向量夾角余弦公式列方程解得,從而可得結(jié)果.
(1)因?yàn)?/span>ABCD是矩形,所以BC∥AD,
又因?yàn)?/span>BC不包含于平面ADE,
所以BC∥平面ADE,
因?yàn)?/span>DE∥CF,CF不包含于平面ADE,
所以CF∥平面ADE,
又因?yàn)?/span>BC∩CF=C,所以平面BCF∥平面ADF,
而BF平面BCF,所以BF∥平面ADE.
(2)∵CD⊥AD,CD⊥DE
∴∠ADE為二面角A-CD-F的平面角
∴∠ADE=60°
∵CD⊥面ADE
平面平面,作于點(diǎn),
則平面,
由,得,
以為原點(diǎn),平行于的直線為軸,所在直線為軸,所在直線為軸,
建立如圖所示的空間直角坐標(biāo)系,
則,
,
設(shè),則,
設(shè)平面的法向量為,
則由,得,取,
得平面的一個(gè)法向量為,
又面的一個(gè)法向量為,
,
,
解得或(舍去),
此時(shí),得,
即所求線段上的點(diǎn)滿足.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn)。
(1)證明:;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為鈍角α的角形耕地,其中.在該塊土地中處有一小型建筑,經(jīng)測(cè)量,它到公路、的距離、分別為,.現(xiàn)要過(guò)點(diǎn)修建一條直線公路,將三條公路圍成的區(qū)域建成一個(gè)工業(yè)園.設(shè),,其中.
(1)試建立間的等量關(guān)系;
(2)為盡量減少耕地占用,問(wèn)如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等腰梯形中,,是的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)是的中點(diǎn),是棱的中
點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)判斷能否垂直于平面,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將給定的一個(gè)數(shù)列:,,,…按照一定的規(guī)則依順序用括號(hào)將它分組,則可以得到以組為單位的序列.如在上述數(shù)列中,我們將作為第一組,將,作為第二組,將,,作為第三組,…,依次類推,第組有個(gè)元素(),即可得到以組為單位的序列:,,,…,我們通常稱此數(shù)列為分群數(shù)列.其中第1個(gè)括號(hào)稱為第1群,第2個(gè)括號(hào)稱為第2群,第3個(gè)數(shù)列稱為第3群,…,第個(gè)括號(hào)稱為第群,從而數(shù)列稱為這個(gè)分群數(shù)列的原數(shù)列.如果某一個(gè)元素在分群數(shù)列的第個(gè)群眾,且從第個(gè)括號(hào)的左端起是第個(gè),則稱這個(gè)元素為第群眾的第個(gè)元素.已知數(shù)列1,1,3,1,3,9,1,3,9,27,…,將數(shù)列分群,其中,第1群為(1),第2群為(1,3),第3群為(1,3,),…,以此類推.設(shè)該數(shù)列前項(xiàng)和,若使得成立的最小位于第個(gè)群,則( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn),已知f(x)=x2+ax+4在[1,3]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,過(guò)點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).
(1)求的軌跡方程;
(2)當(dāng)時(shí),求的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤(rùn)y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙注:利潤(rùn)與投資單位為萬(wàn)元
分別將A,B兩種產(chǎn)品的利潤(rùn)y表示為投資x的函數(shù)關(guān)系式;
該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)問(wèn):怎樣分配這10萬(wàn)元資金,才能使企業(yè)獲得最大利潤(rùn),最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>I,區(qū)間,記.證明:
(1)函數(shù)在區(qū)間D上單調(diào)遞增的充要條件是:,都有;
(2)函數(shù)在區(qū)間D上單調(diào)遞減的充要條件是:,都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com