【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點(diǎn)個(gè)數(shù).

【答案】解:(Ⅰ)函數(shù)f(x)=x+ +lnx(x>0), f′(x)=1﹣ + =
f(x)在x=1處取得極小值,
即有f′(1)=0,解得a=2,
經(jīng)檢驗(yàn),a=2時(shí),f(x)在x=1處取得極小值.
則有a=2;
(Ⅱ)f′(x)=1﹣ + = ,x>0,
f(x)在區(qū)間(1,2)上單調(diào)遞增,
即為f′(x)≥0在區(qū)間(1,2)上恒成立,
即a≤x2+x在區(qū)間(1,2)上恒成立,
由x2+x∈(2,6),
則a≤2;
(Ⅲ)g(x)=f′(x)﹣x=1﹣ + ﹣x,x>0,
令g(x)=0,則a=﹣x3+x2+x,
令h(x)=﹣x3+x2+x,x>0,
則h′(x)=﹣3x2+2x+1=﹣(3x+1)(x﹣1),
當(dāng)x∈(0,1),h′(x)>0,h(x)在(0,1)遞增;
當(dāng)x∈(1,+∞),h′(x)<0,h(x)在(1,+∞)遞減.
即有h(x)的最大值為h(1)=1,
則當(dāng)a>1時(shí),函數(shù)g(x)無零點(diǎn);
當(dāng)a=1或a≤0時(shí),函數(shù)g(x)有一個(gè)零點(diǎn);
當(dāng)0<a<1時(shí),函數(shù)g(x)有兩個(gè)零點(diǎn)
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),由題意可得f′(1)=0,即可解得a,注意檢驗(yàn);(Ⅱ)由條件可得,f′(x)≥0在區(qū)間(1,2)上恒成立,運(yùn)用參數(shù)分離,求得右邊函數(shù)的范圍,即可得到a的范圍;(Ⅲ)令g(x)=0,則a=﹣x3+x2+x,令h(x)=﹣x3+x2+x,x>0,求出導(dǎo)數(shù),求得單調(diào)區(qū)間和最值,結(jié)合圖象對(duì)a討論,即可判斷零點(diǎn)的個(gè)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1(a1)xyb0,l2axby40,求滿足下列條件的ab的值.

(1)l1l2,l1過點(diǎn)(1,1);

(2)l1l2l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,,,.

(1),求的通項(xiàng)公式;

(2).

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合,

.

(2)∵,解得或3,

當(dāng)時(shí),,此時(shí);

當(dāng)時(shí),,此時(shí).

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點(diǎn) ,且點(diǎn)的坐標(biāo)為.

1的值

2為拋物線的焦點(diǎn) 為拋物線上任一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對(duì)稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知f(x)= x3 x2+3x﹣ ,則f( )+f( )+f( )+…+f( )=(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.[
B.[
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)m使得 恒成立?若存在,求實(shí)數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓的半徑為,是圓上的一個(gè)動(dòng)點(diǎn),的中垂線于點(diǎn),以直線軸,的中垂線為軸建立平面直角坐標(biāo)系。

(Ⅰ)若點(diǎn)的軌跡為曲線,求曲線的方程;

(Ⅱ)設(shè)點(diǎn)為圓上任意一點(diǎn),過作圓的切線與曲線交于兩點(diǎn),證明:以為直徑的圓經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案