【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標方程;

(2)點與點關于軸對稱,求曲線上的點到點的距離的取值范圍.

【答案】(1)根據(jù)將極坐標化為直角坐標;根據(jù)消參數(shù)得普通方程,再根據(jù)圓心到切線距離等于半徑得切線斜率,最后根據(jù)將直線點斜式化為極坐標方程(2)先得 ,再根據(jù)圓的性質得曲線上的點到點的距離的最小值為,最大值為,即可求取值范圍

【解析】試題分析:對于問題(1)可以先求出點的直角坐標以及曲線的普通方程,利用直線且與曲線相切,即可求直線的極坐標方程;對問題(2)可以先根據(jù)點與點關于軸對稱,求出點的坐標,再求出點到圓心的距離,從而可求曲線上的點到點的距離的取值范圍.

試題解析:(1)由題意得點的直角坐標為,曲線的一般方程為

設直線的方程為,即

直線且與曲線相切,

,解得,

直線的極坐標方程為,

2與點關于軸對稱,的直角坐標為,

則點到圓心的距離為,

曲線上的點到點的距離的最小值為,最大值為,

曲線上的點到點的距離的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),函數(shù)

1)求函數(shù)的值域;

2)若對于任意的,總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列4個命題:

①“若成等比數(shù)列,則”的逆命題;

②“如果,則”的否命題;

③在中,“若”則“”的逆否命題;

④當時,若恒成立,則的取值范圍是.

其中真命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有個黃色、個白色的乒乓球,做不放回抽樣,每次任取個球,取次,則關于事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率說法正確的是( )

A. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于

B. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于

C. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于

D. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點的直線與橢圓交于兩點,過軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為推行“高效課堂”教學法,某數(shù)學老師分別用傳統(tǒng)教學和“高效課堂”兩種不同的教學方法,在同一年級的甲、乙兩個同層次的班進行教學實驗,為了解教學效果,期末考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).

(1)分別計算甲、乙兩班20個樣本中,數(shù)學成績前十名的平均分,并大致判斷那種教學方法的教學效果更佳;

(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方法有關”?

附:

獨立性檢驗臨界表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人為了響應政府“節(jié)能減排”的號召,決定各購置一輛純電動汽車.經(jīng)了解目前市場上銷售的主流純電動汽車,按續(xù)駛里程數(shù)(單位:公里)可分為三類車型, , .甲從三類車型中挑選,乙從兩類車型中挑選,甲、乙兩人選擇各類車型的概率如表:

已知甲、乙都選類型的概率為.

(1)求的值;

(2)求甲、乙選擇不同車型的概率;

(3)某市對購買純電動汽車進行補貼,補貼標準如下表:

記甲、乙兩人購車所獲得的財政補貼之和為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案