【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

【答案】(1)0.32(2)平均數(shù)168.56;中位數(shù):168.25(3)

【解析】

利用頻率分布直方圖能求出被采訪人恰好在第2組或第6組的概率;利用頻率分布直方圖能求出平均數(shù)和中位數(shù);人,其中男生3人,設(shè)為a,bc,女生三人,設(shè)為de,f,利用列舉法能求出至少有1名女性市民的概率.

被采訪人恰好在第2組或第6組的概率

平均數(shù)

設(shè)中位數(shù)為x,則

中位數(shù)

人,其中男生3人,設(shè)為ab,c,女生三人,設(shè)為d,e

則任選2人,可能為,,,,,,,,,,,,,共15種,

其中兩個(gè)全是男生的有,,,共3種情況,

設(shè)事件A:至少有1名女性,

則至少有1名女性市民的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號中各選取部進(jìn)行測試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部求這兩部手機(jī)中恰有一部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)若函數(shù)的最大值是,求的值;

(3)已知,若存在兩個(gè)不同的正數(shù),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(diǎn)(O為圓心),∠AOB=120°,點(diǎn)C是線段AB上不與A、B重合的動(dòng)點(diǎn).MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設(shè)

1)求的值

2)若不等式上有解,求實(shí)數(shù)的取值范圍;

3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足:①a1=1;②所有項(xiàng)an∈N*;③1=a1<a2<…<an<an+1<….設(shè)集合Am={n|an≤m,m∈N*),將集合Am中的元素的最大值記為bm,即bm是數(shù)列{an}中滿足不等式an≤m的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.

例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.

(I)若數(shù)列{an}的伴隨數(shù)列為1,1,2,2,2,3,3,3,3……,請寫出數(shù)列{an};

(II)設(shè)an=4n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前50項(xiàng)之和;

(III)若數(shù)列{an}的前n項(xiàng)和(其中c為常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項(xiàng)和Tm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(一)在函數(shù)圖象的學(xué)習(xí)中常常用到化歸轉(zhuǎn)化的思想,往往通過對一些已經(jīng)學(xué)習(xí)過的函數(shù)圖象的研究,進(jìn)一步遷移到其它函數(shù),例如函數(shù)與正弦函數(shù)就有密切的聯(lián)系,因?yàn)?/span>.只需將軸下方的圖象翻折到上方,就得到的圖象.

(二)在研究函數(shù)零點(diǎn)問題時(shí),往往會將函數(shù)零點(diǎn)問題轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.例如研究函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來進(jìn)行處理,通過作圖不僅知道函數(shù)有且僅有一個(gè)零點(diǎn),還可以確定零點(diǎn).這體現(xiàn)了化歸轉(zhuǎn)化與數(shù)形結(jié)合的思想在函數(shù)研究中的應(yīng)用.

結(jié)合閱讀材料回答下面兩個(gè)問題:

作出函數(shù)的圖象;

利用作圖的方法驗(yàn)證函數(shù)有且僅有兩個(gè)零點(diǎn).若記兩個(gè)零點(diǎn)分別為,證明:.(注:在同一坐標(biāo)中作圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2lnxx

(I)寫出函數(shù)fx)的定義域,并求其單調(diào)區(qū)間;

(II)已知曲線yfx)在點(diǎn)(x0,fx0))處的切線為l,且l在y軸上的截距是﹣2,求x0

查看答案和解析>>

同步練習(xí)冊答案