某停車場臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人在該場地停車,兩人停車都不超過4小時(shí).
(1)若甲停車1小時(shí)以上且不超過2小時(shí)的概率為
1
3
,停車付費(fèi)多于14元的概率為
5
12
,求甲停車付費(fèi)6元的概率;
(2)若甲、乙兩人每人停車的時(shí)長在每個(gè)時(shí)段的可能性相同,求甲乙二人停車付費(fèi)之和為28元的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)甲停車付費(fèi)6元,說明甲停車不超過1小時(shí);停車付費(fèi)多于14元,說明停車超過2小時(shí).再用1減去所給的2個(gè)概率,即為所求.
(2)設(shè)甲乙2人的停車時(shí)間分別為x小時(shí)、y小時(shí),用列舉法求得所有的(x,y)共有16個(gè),其中滿足甲乙二人停車付費(fèi)之和為28元的(x,y)有3個(gè),從而求得甲乙二人停車付費(fèi)之和為28元的概率.
解答: 解:(1)甲停車付費(fèi)6元,說明甲停車不超過1小時(shí);停車付費(fèi)多于14元,說明停車超過2小時(shí).
再根據(jù)甲停車1小時(shí)以上且不超過2小時(shí)的概率為
1
3
,停車付費(fèi)多于14元的概率為
5
12

可得甲停車付費(fèi)6元的概率為1-
1
3
-
5
12
=
1
4

(2)設(shè)甲乙2人的停車時(shí)間分別為x小時(shí)、y小時(shí),其中x、y為正整數(shù),
則所有的(x,y)共有:(1,1)、(1,2),(1,3),(1,4),(2,1)、(2,2),(2,3),(2,4),(3,1)、(3,2),(3,3),(3,4),(4,1)、(4,2),(4,3),(4,4),共計(jì)16個(gè),
其中滿足甲乙二人停車付費(fèi)之和為28元的(x,y)有:(1,3)、(2,2)、(3,1),共計(jì)3個(gè),
故甲乙二人停車付費(fèi)之和為28元的概率為
3
16
點(diǎn)評:本題考主要查古典概型問題,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,列舉法,是解決古典概型問題的一種重要的解題方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

按照如圖的程序運(yùn)行,已知輸入x的值為2+log23,則輸出y的值為( 。
A、7B、11C、12D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn).若△PF1F2的周長為6,橢圓的離心率為
1
2
,求橢圓上的點(diǎn)到橢圓焦點(diǎn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4y-4=0,
(Ⅰ)若過定點(diǎn)(-2,0)的直線l與圓C相切,求直線l的方程;
(Ⅱ)若過定點(diǎn)(-1,0)且傾斜角為
π
6
的直線l與圓C相交于A,B兩點(diǎn),求線段AB的中點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
2
2
,且橢圓過點(diǎn)(1,1),過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓上一點(diǎn)M滿足MA=MB.
(1)求橢圓C的方程;
(2)求
1
OA2
+
1
OB2
+
2
OM2
的值;
(3)是否存在定圓,使得直線l繞原點(diǎn)轉(zhuǎn)動(dòng)時(shí),AM恒與該定圓相切,若存在,求出圓的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知橢圓
x2
36
+
y2
9
=1
的一條弦的中點(diǎn)為P(4,2),求此弦所在直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,長軸長為4
5
,直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)若直線l不經(jīng)過橢圓上的點(diǎn)M(4,1),求證:直線MA,MB的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
、
b
滿足|
a
|=1,|
b
|=
3
,且(3
a
-2
b
)⊥
a
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn)為F1、F2,漸近線為l1,l2,過點(diǎn)F2且與l1平行的直線交l2于M,若M在以線段F1 F2為直徑的圓上,則雙曲線的離心率為( 。
A、2
B、
2
C、
3
D、
5

查看答案和解析>>

同步練習(xí)冊答案