【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,并說(shuō)明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線(xiàn)PA與平面PCE所成角的正弦值.
【答案】
(1)
解:延長(zhǎng)AB交直線(xiàn)CD于點(diǎn)M,∵點(diǎn)E為AD的中點(diǎn),∴AE=ED= AD,
∵BC=CD= AD,∴ED=BC,
∵AD∥BC,即ED∥BC.∴四邊形BCDE為平行四邊形,即EB∥CD.
∵AB∩CD=M,∴M∈CD,∴CM∥BE,
∵BE平面PBE,∴CM∥平面PBE,
∵M(jìn)∈AB,AB平面PAB,
∴M∈平面PAB,故在平面PAB內(nèi)可以找到一點(diǎn)M(M=AB∩CD),使得直線(xiàn)CM∥平面PBE
(2)
解:如圖所示,
∵∠ADC=∠PAB=90°,異面直線(xiàn)PA與CD所成的角為90°,AB∩CD=M,
∴AP⊥平面ABCD.
∴CD⊥PD,PA⊥AD.
因此∠PDA是二面角P﹣CD﹣A的平面角,大小為45°.
∴PA=AD.
不妨設(shè)AD=2,則BC=CD= AD=1.∴P(0,0,2),E(0,1,0),C(﹣1,2,0),
∴ =(﹣1,1,0), =(0,1,﹣2), =(0,0,2),
設(shè)平面PCE的法向量為 =(x,y,z),則 ,可得: .
令y=2,則x=2,z=1,∴ =(2,2,1).
設(shè)直線(xiàn)PA與平面PCE所成角為θ,則sinθ= = = = .
【解析】(1)延長(zhǎng)AB交直線(xiàn)CD于點(diǎn)M,由點(diǎn)E為AD的中點(diǎn),可得AE=ED= AD,由BC=CD= AD,可得ED=BC,已知ED∥BC.可得四邊形BCDE為平行四邊形,即EB∥CD.利用線(xiàn)面平行的判定定理證明得直線(xiàn)CM∥平面PBE即可.
(2)如圖所示,由∠ADC=∠PAB=90°,異面直線(xiàn)PA與CD所成的角為90°AB∩CD=M,可得AP⊥平面ABCD.由CD⊥PD,PA⊥AD.因此∠PDA是二面角P﹣CD﹣A的平面角,大小為45°.PA=AD.不妨設(shè)AD=2,則BC=CD= AD=1.可得P(0,0,2),E(0,1,0),C(﹣1,2,0),利用法向量的性質(zhì)、向量夾角公式、線(xiàn)面角計(jì)算公式即可得出.
本題考查了空間位置關(guān)系、空間角計(jì)算公式、法向量的性質(zhì),考查了空間想象能力、推理能力與計(jì)算能力,屬于中檔題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線(xiàn)與平面平行的判定(平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行),還要掌握空間角的異面直線(xiàn)所成的角(已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過(guò)線(xiàn)段OC上一點(diǎn)T(t,0)作橫軸的垂線(xiàn)l,梯形OABC在直線(xiàn)l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過(guò)的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)
,過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為(為參數(shù)),與分別交于.
(1)寫(xiě)出的平面直角坐標(biāo)系方程和的普通方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿(mǎn)足 = = , = = =﹣2,動(dòng)點(diǎn)P,M滿(mǎn)足 =1, = ,則| |2的最大值是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為,曲線(xiàn)C的參數(shù)方程為(α為參數(shù)).
(1)寫(xiě)出點(diǎn)P的直角坐標(biāo)及曲線(xiàn)C的直角坐標(biāo)方程;
(2)若Q為曲線(xiàn)C上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線(xiàn)l:ρcos θ+2ρsin θ+1=0距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全問(wèn)題越來(lái)越引起人們的重視,農(nóng)藥、化肥的濫用對(duì)人民群眾的健康帶來(lái)一定的危害,為了給消費(fèi)者帶來(lái)放心的蔬菜,某農(nóng)村合作社每年投入200萬(wàn)元,搭建了甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入20萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬(wàn)元)滿(mǎn)足.設(shè)甲大棚的投入為(單位:萬(wàn)元),每年兩個(gè)大棚的總收益為(單位:萬(wàn)元)
(1)求的值;
(2)試問(wèn)如何安排甲、乙兩個(gè)大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},則A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿(mǎn)足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為,公比為-的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿(mǎn)足an+an+2=2an+1,并寫(xiě)出數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com