數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng),等差數(shù)列滿足
(1)求數(shù)列、的通項(xiàng)公式
(2)設(shè)=,求數(shù)列的前項(xiàng)和.
(1) , (2)
解析試題分析:(1)由與的關(guān)系可得及,兩式相減可得數(shù)列的通項(xiàng)公式,在使用與的關(guān)系時(shí)要注意與的情況討論;(2) 的通項(xiàng)公式是由一個(gè)等差數(shù)列與一個(gè)等比數(shù)列比值的形式,求其和時(shí)可用錯(cuò)位相減法.兩式相減時(shí)要注意下式的最后一項(xiàng)出現(xiàn)負(fù)號(hào),等比求和時(shí)要數(shù)清等比數(shù)列的項(xiàng)數(shù),也可以使用這個(gè)求和公式,它可以避免找數(shù)列的數(shù)項(xiàng);最終結(jié)果化簡依靠指數(shù)運(yùn)算,要保證結(jié)果的成功率,可用作為特殊值檢驗(yàn)結(jié)果是否正確.
試題解析:(1)由題意知,,故
又時(shí),由得,即
故是以1為首項(xiàng)以2為公比的等比數(shù)列,
所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/1/1mbvp2.png" style="vertical-align:middle;" />,所以的公差為2,所以
(2)由=,得①
②
-②得
所以
考點(diǎn):1、與的關(guān)系;2、錯(cuò)位相減法求數(shù)列和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n.又知數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),…,第an項(xiàng)刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2013項(xiàng)和T2013.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,滿足,,
(1)求的值;
(2)猜想數(shù)列 的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)己知,設(shè),記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列具有性質(zhì):①為整數(shù);②對于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(且N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng)為,公差為,且不等式的解集為.
(I)求數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和滿足,等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com