已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,
(1)求拋物線的方程;
(2)設(shè)點是拋物線上的兩點,的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點,求弦的長.
(1)(2)-1(3)

試題分析:解:(1)設(shè),因為,由拋物線的定義得,又,所以,因此,解得,從而拋物線的方程為
(2)由(1)知點的坐標為,因為的角平分線與軸垂直,所以可知的傾斜角互補,即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
代入拋物線方程得,該方程的解為4、,
由韋達定理得,即,同理
所以,
(3)設(shè),代入拋物線方程得,
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當涉及到交點時,常用到根與系數(shù)的關(guān)系式:)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)連接雙曲線的四個頂點組成的四邊形的面積為,連接其四個焦點組成的四邊形的面積為,則 的最大值是
A.B.C. 1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)中心在原點的雙曲線與橢圓+y2=1有公共的焦點,且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線的焦點為頂點,頂點為焦點的橢圓的標準方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線=1的兩條漸近線互相垂直,那么該雙曲線的離心率是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:










(Ⅰ)求曲線、的標準方程;
(Ⅱ)設(shè)直線過拋物線的焦點,與橢圓交于不同的兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡,兩點.
(i)證明:
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面上動點P()及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為、 且
(I)求動點P所在曲線C的方程。
(II)設(shè)直線與曲線C交于不同的兩點M、N,當OM⊥ON時,求點O到直線的距離。(O為坐標原點)

查看答案和解析>>

同步練習冊答案