【題目】已知定義域為的函數(shù)是奇函數(shù),為指數(shù)函數(shù)且的圖象過點.

1)求實數(shù)n的值并寫出的表達式;

2)若對任意的,不等式恒成立,求實數(shù)t的范圍;

3)若方程恰有4個互異的實數(shù)根,求實數(shù)a的范圍.

【答案】1,23

【解析】

1)首先求得指數(shù)函數(shù)的解析式,再根據(jù)定義在上的奇函數(shù),得到,由此求得的值并求得的表達式.

2)根據(jù)的單調(diào)性和奇偶性化簡不等式,得到,構(gòu)造函數(shù),結(jié)合一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.

3)根據(jù)函數(shù)為奇函數(shù)化簡,根據(jù)是單調(diào)函數(shù)得到,利用換元法,構(gòu)造函數(shù),結(jié)合圖像求得的取值范圍.

1)由題意可設(shè)個,又過點

所以,又為奇函數(shù),∴

所以

2)由,上單調(diào)遞減,

為奇函數(shù),由

所以,即

,由題意,

3)由于為奇函數(shù),所以由,又上遞減,

顯然,∴,則

方程有4個互異實數(shù)根,畫出的圖象如下圖所示,由圖可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】開發(fā)商現(xiàn)有四棟樓AB,C,DD位于BC間,到樓A,B,C的距離分別為,,且從樓D看樓A,B的視角為.如圖所示,不計樓大小和高度.

1)試求從樓A看樓BC視角大;

2)開發(fā)商為謀求更大開發(fā)區(qū)域,擬再建三棟樓M,P,N,形成以樓AMPN為頂點的矩形開發(fā)區(qū)域,規(guī)劃要求樓BC分別位于樓MP和樓PN間,如圖所示,記,當(dāng)等于多少時,矩形開發(fā)區(qū)域面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要建造一段長的高速公路,工程隊需要把380名施工人員分為兩組,一組負責(zé)的軟土地帶的施工,另一組完成剩下的硬土地帶的施工.根據(jù)工程技術(shù)人員的測算,軟、硬地帶每米公路的工程量分別為50·天和30·.

1)設(shè)參與軟土地帶工作的人數(shù)為人,試分別寫出在軟、硬地帶筑路的時間關(guān)于的函數(shù)表達式;

2)問如何安排兩組的人數(shù),才能使全隊筑路工期最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

Ⅰ)若的一個極值點,求函數(shù)表達式, 并求出的單調(diào)區(qū)間;

Ⅱ)若,證明當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:

(1) AD邊所在直線的方程;

(2) DC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的等腰梯形ABCD中,,ECD中點.若沿AE將三角形DAE折起,并連接DBDC,得到如圖所示的幾何體D-ABCE,在圖中解答以下問題:

1)設(shè)GAD中點,求證:平面GBE

2)若平面平面ABCE,且FAB中點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體ABCD中,都是邊長為8的正三角形,點O是線段BC的中點.

1)證明:.

2)若為銳角,且四面體ABCD的體積為求側(cè)面ACD的面積.

查看答案和解析>>

同步練習(xí)冊答案