【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示
參加社團(tuán)活動 | 不參加社團(tuán)活動 | 合計(jì) | |
學(xué)習(xí)積極性高 | 17 | 8 | 25 |
學(xué)習(xí)積極性一般 | 5 | 20 | 25 |
合計(jì) | 22 | 28 | 50 |
(Ⅰ)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動的學(xué)生的概率是多少?抽到不參加社團(tuán)活動且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動情況是否有關(guān)系?并說明理由.
x2= .
P(x2≥k) | 0.05 | 0.01 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
【答案】解:(Ⅰ)積極參加社團(tuán)活動的學(xué)生有22人,總?cè)藬?shù)為50人,
所以隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動的學(xué)生的概率是=;
抽到不參加社團(tuán)活動且學(xué)習(xí)積極性一般的學(xué)生為20人,
所以其概率為=;
(Ⅱ)x2=≈11.7
∵x2>10.828,
∴有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動情況有關(guān)系.
【解析】(Ⅰ)求出積極參加社團(tuán)活動的學(xué)生有22人,總?cè)藬?shù)為50人,得到概率,不參加社團(tuán)活動且學(xué)習(xí)積極性一般的學(xué)生為20人,得到概率.
(Ⅱ)根據(jù)條件中所給的數(shù)據(jù),代入求這組數(shù)據(jù)的觀測值的公式,求出觀測值,把觀測值同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動情況有關(guān)系。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的偶函數(shù)f(x)滿足對任意的x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣(x﹣2)2+1.若函數(shù)y=f(x)﹣a(x﹣)在(0,+∞)上恰有三個零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.( , 3)
B.( , )
C.(3,12)
D.( , 12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意實(shí)數(shù)a,b,定義max{a,b}= , 已知在[﹣2,2]上的偶函數(shù)f(x)滿足當(dāng)0≤x≤2時,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個根,則m的取值范圍是( )
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知過原點(diǎn)的動直線與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線 與曲線只有一個交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx(a>0),e為自然對數(shù)的底數(shù).
(Ⅰ)若過點(diǎn)A(2,f(2))的切線斜率為2,求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x>0時,求證:f(x)≥a(1﹣);
(Ⅲ)在區(qū)間(1,e)上>1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,以的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為.
(1)求橢圓的方程;
(2)設(shè),分別為橢圓的左、右頂點(diǎn),是直線上不同于點(diǎn)的任意一點(diǎn),若直線,分別與橢圓相交于異于,的點(diǎn)、,試探究,點(diǎn)是否在以為直徑的圓內(nèi)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com