分析 命題p:當x∈[0,1]時,$1≤{({\frac{1}{2}})^{x-1}}≤2$,要使${({\frac{1}{2}})^{x-1}}-m≥0$恒成立,需滿足m≤$[(\frac{1}{2})^{x-1}]_{min}$.命題q:$f(x)=\sqrt{3}sinx+cosx-m=2sin({x+\frac{π}{6}})-m$,當$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,$0≤x+\frac{π}{6}≤\frac{π}{2}$,$0≤2sin({x+\frac{π}{6}})≤2$,要使$?x∈[{-\frac{π}{6},\frac{π}{3}}]$,函數(shù)$f(x)=\sqrt{3}sinx+cosx-m$有零點,即可得出m的取值范圍.因為命題“p∧q”為真命題,所以p真,q真,進而得出.
解答 解:命題p:當x∈[0,1]時,$1≤{({\frac{1}{2}})^{x-1}}≤2$,要使${({\frac{1}{2}})^{x-1}}-m≥0$恒成立,需滿足m≤1;
命題q:$f(x)=\sqrt{3}sinx+cosx-m=2sin({x+\frac{π}{6}})-m$,當$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,$0≤x+\frac{π}{6}≤\frac{π}{2}$,$0≤2sin({x+\frac{π}{6}})≤2$,要使$?x∈[{-\frac{π}{6},\frac{π}{3}}]$,函數(shù)$f(x)=\sqrt{3}sinx+cosx-m$有零點,需滿足0≤m≤2,
因為命題“p∧q”為真命題,所以p真,q真,
所以0≤m≤1.
點評 本題考查了復(fù)合命題真假的判定方法、函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | 2x-y-4=0 | C. | x+2y-2=0 | D. | x+2y-4=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com